|
| 1 | +import pandas as pd |
| 2 | +import numpy as np |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import matplotlib.image as mpimg |
| 5 | +from keras.models import Sequential |
| 6 | +from keras.layers import Conv2D |
| 7 | +from keras.layers import MaxPooling2D |
| 8 | +from keras.preprocessing.image import ImageDataGenerator |
| 9 | +from keras.layers.core import Dense, Dropout, Activation, Flatten |
| 10 | +from keras.metrics import top_k_categorical_accuracy |
| 11 | + |
| 12 | +def top_5_accuracy(y_true, y_pred): |
| 13 | + return top_k_categorical_accuracy(y_true, y_pred, k=5) |
| 14 | + |
| 15 | +def get_data(): |
| 16 | + train_data = ImageDataGenerator(rescale = 1./255, shear_range = 0.2,zoom_range = 0.2,rotation_range=40,fill_mode='nearest', horizontal_flip = True) |
| 17 | + test_data = ImageDataGenerator(rescale = 1./255) |
| 18 | + validation_data = ImageDataGenerator(rescale = 1./255) |
| 19 | + training_set = train_data.flow_from_directory('Training',target_size = (64, 64),color_mode='rgb',class_mode = 'categorical') |
| 20 | + test_set = test_data.flow_from_directory('Testing',target_size = (64,64),color_mode='rgb',class_mode = 'categorical') |
| 21 | + validation_set = validation_data.flow_from_directory('Validation',target_size = (64,64),color_mode='rgb',class_mode = 'categorical') |
| 22 | + plt.figure() |
| 23 | + plt.hist(training_set.classes, bins=62) |
| 24 | + plt.title("Histogram of training dataset") |
| 25 | + plt.savefig('Histogram of training dataset.png') |
| 26 | + plt.figure() |
| 27 | + plt.hist(test_set.classes, bins=62) |
| 28 | + plt.title("Histogram of testing dataset") |
| 29 | + plt.savefig("Histogram of testing dataset.png") |
| 30 | + plt.figure() |
| 31 | + plt.hist(validation_set.classes, bins=62) |
| 32 | + plt.title("Histogram of validation dataset") |
| 33 | + plt.savefig("Histogram of validation dataset.png") |
| 34 | + |
| 35 | + classifier = Sequential() |
| 36 | + classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu')) |
| 37 | + classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu')) |
| 38 | + classifier.add(MaxPooling2D(pool_size = (2, 2))) |
| 39 | + classifier.add(Conv2D(32, (3, 3), activation = 'relu')) |
| 40 | + classifier.add(MaxPooling2D(pool_size = (2, 2))) |
| 41 | + classifier.add(Flatten(input_shape=classifier.output_shape[1:])) |
| 42 | + classifier.add(Dense(256, activation='relu')) |
| 43 | + classifier.add(Dropout(0.5)) |
| 44 | + classifier.add(Dense(62, activation='softmax')) |
| 45 | + classifier.compile(optimizer = 'Nadam', loss = 'mean_squared_error', metrics = [top_5_accuracy]) |
| 46 | + |
| 47 | + |
| 48 | + nr_epoch = 20 |
| 49 | + his = classifier.fit_generator(training_set,steps_per_epoch = 110,epochs = nr_epoch,validation_data = validation_set) |
| 50 | + train_loss = his.history['loss'] |
| 51 | + val_loss = his.history['val_loss'] |
| 52 | + train_acc = his.history['top_5_accuracy'] |
| 53 | + val_acc = his.history['val_top_5_accuracy'] |
| 54 | + xc = range(nr_epoch) |
| 55 | + |
| 56 | + plt.figure() |
| 57 | + plt.plot(xc, val_loss, label='val_loss') |
| 58 | + plt.plot(xc, train_loss, label='train_loss') |
| 59 | + plt.ylabel("mean_squared_error") |
| 60 | + plt.xlabel("number of epoch") |
| 61 | + plt.legend() |
| 62 | + plt.savefig("Loss_top5.png") |
| 63 | + plt.figure() |
| 64 | + plt.plot(xc, val_acc, label='val_acc') |
| 65 | + plt.plot(xc ,train_acc, label='train_acc') |
| 66 | + plt.legend(loc=4) |
| 67 | + plt.ylabel("accuracy") |
| 68 | + plt.xlabel("number of epoch") |
| 69 | + plt.savefig("Accuracy_top5.png") |
| 70 | + classifier.save('classifier_20epoch.h5') |
| 71 | + |
| 72 | + |
| 73 | +get_data() |
| 74 | + |
| 75 | + |
0 commit comments