forked from fbsamples/oculus-networked-physics-sample
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJitterBuffer.cs
512 lines (402 loc) · 21.6 KB
/
JitterBuffer.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/**
* Copyright (c) 2017-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the Scripts directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
using System;
using UnityEngine;
using UnityEngine.Profiling;
using UnityEngine.Assertions;
using System.Collections.Generic;
public class JitterBufferEntry
{
public Network.PacketHeader packetHeader;
public int numAvatarStates = 0;
public int numStateUpdates = 0;
public int[] cubeIds = new int[Constants.NumCubes];
public bool[] notChanged = new bool[Constants.NumCubes];
public bool[] hasDelta = new bool[Constants.NumCubes];
public bool[] perfectPrediction = new bool[Constants.NumCubes];
public bool[] hasPredictionDelta = new bool[Constants.NumCubes];
public ushort[] baselineSequence = new ushort[Constants.NumCubes];
public CubeState[] cubeState = new CubeState[Constants.NumCubes];
public CubeDelta[] cubeDelta = new CubeDelta[Constants.NumCubes];
public CubeDelta[] predictionDelta = new CubeDelta[Constants.NumCubes];
public AvatarState[] avatarState = new AvatarState[Constants.MaxClients];
public AvatarStateQuantized[] avatarStateQuantized = new AvatarStateQuantized[Constants.MaxClients];
}
public class JitterBuffer
{
double time;
long initial_frame;
bool interpolating;
long interpolation_start_frame;
double interpolation_start_time;
long interpolation_end_frame;
double interpolation_end_time;
Network.SequenceBuffer32<JitterBufferEntry> sequenceBuffer = new Network.SequenceBuffer32<JitterBufferEntry>( Constants.JitterBufferSize );
public JitterBuffer()
{
Reset();
}
public void Reset()
{
time = -1.0;
initial_frame = 0;
interpolating = false;
interpolation_start_frame = 0;
interpolation_start_time = 0.0;
interpolation_end_frame = 0;
interpolation_end_time = 0.0;
sequenceBuffer.Reset();
}
public bool AddStateUpdatePacket( byte[] packetData, DeltaBuffer receiveDeltaBuffer, ushort resetSequence, out long packetFrameNumber )
{
Network.PacketHeader packetHeader;
ReadStateUpdatePacketHeader( packetData, out packetHeader );
packetFrameNumber = packetHeader.frameNumber;
int entryIndex = sequenceBuffer.Insert( packetHeader.frameNumber );
if ( entryIndex < 0 )
{
return false;
}
bool result = true;
Profiler.BeginSample( "ProcessStateUpdatePacket" );
JitterBufferEntry entry = sequenceBuffer.Entries[entryIndex];
if ( ReadStateUpdatePacket( packetData, out entry.packetHeader, out entry.numAvatarStates, ref entry.avatarStateQuantized, out entry.numStateUpdates, ref entry.cubeIds, ref entry.notChanged, ref entry.hasDelta, ref entry.perfectPrediction, ref entry.hasPredictionDelta, ref entry.baselineSequence, ref entry.cubeState, ref entry.cubeDelta, ref entry.predictionDelta ) )
{
for ( int i = 0; i < entry.numAvatarStates; ++i )
AvatarState.Unquantize( ref entry.avatarStateQuantized[i], out entry.avatarState[i] );
DecodePrediction( receiveDeltaBuffer, resetSequence, entry.packetHeader.sequence, entry.numStateUpdates, ref entry.cubeIds, ref entry.perfectPrediction, ref entry.hasPredictionDelta, ref entry.baselineSequence, ref entry.cubeState, ref entry.predictionDelta );
DecodeNotChangedAndDeltas( receiveDeltaBuffer, resetSequence, entry.numStateUpdates, ref entry.cubeIds, ref entry.notChanged, ref entry.hasDelta, ref entry.baselineSequence, ref entry.cubeState, ref entry.cubeDelta );
}
else
{
sequenceBuffer.Remove( packetHeader.frameNumber );
result = false;
}
Profiler.EndSample();
return result;
}
public JitterBufferEntry GetEntry( uint frameNumber )
{
int entryIndex = sequenceBuffer.Find( frameNumber );
if ( entryIndex == -1 )
return null;
return sequenceBuffer.Entries[entryIndex];
}
public void Start( long initialFrame )
{
time = 0.0;
initial_frame = initialFrame;
interpolating = false;
}
public void AdvanceTime( float deltaTime )
{
Assert.IsTrue( deltaTime >= 0.0f );
if ( time < 0 )
return;
time += deltaTime;
}
static T Clamp<T>( T value, T min, T max ) where T : System.IComparable<T>
{
if ( value.CompareTo( max ) > 0 )
return max;
else if ( value.CompareTo( min ) < 0 )
return min;
return value;
}
public bool GetInterpolatedAvatarState( ref AvatarState[] output, out int numOutputAvatarStates, out ushort resetSequence )
{
numOutputAvatarStates = 0;
resetSequence = 0;
// if interpolation frame is negative, it's too early to display anything
double interpolation_frame = initial_frame + time * Constants.PhysicsFrameRate;
if ( interpolation_frame < 0.0 )
return false;
// if we are interpolating but the interpolation start frame is too old,
// go back to the not interpolating state, so we can find a new start point.
const int n = 16;
if ( interpolating )
{
long frame = (long) Math.Floor( interpolation_frame );
if ( frame - interpolation_start_frame > n )
interpolating = false;
}
// if not interpolating, attempt to find an interpolation start point.
// if start point exists, go into interpolating mode and set end point to start point
// so we can reuse code below to find a suitable end point on first time through.
// if no interpolation start point is found, return.
if ( !interpolating )
{
long current_frame = (uint) Math.Floor( interpolation_frame );
for ( long frame = current_frame + 1; ( frame > current_frame - n ) && ( frame >= 0 ); frame-- )
{
JitterBufferEntry entry = GetEntry( (uint) frame );
if ( entry != null )
{
double avatar_sample_time = ( frame - initial_frame ) * ( 1.0 / Constants.PhysicsFrameRate ) + entry.packetHeader.avatarSampleTimeOffset;
if ( time >= avatar_sample_time && time <= avatar_sample_time + ( 1.0f / Constants.PhysicsFrameRate ) )
{
interpolation_start_frame = frame;
interpolation_end_frame = frame;
interpolation_start_time = avatar_sample_time;
interpolation_end_time = avatar_sample_time;
interpolating = true;
}
}
}
}
if ( !interpolating )
return false;
Assert.IsTrue( time >= interpolation_start_time );
// if current time is >= end time, we need to start a new interpolation
// from the previous end time to the next sample that exists up to n samples ahead.
if ( time >= interpolation_end_time )
{
interpolation_start_frame = interpolation_end_frame;
interpolation_start_time = interpolation_end_time;
for ( int i = 0; i < n; ++i )
{
JitterBufferEntry entry = GetEntry( (uint) ( interpolation_start_frame + 1 + i ) );
if ( entry != null )
{
double avatar_sample_time = ( interpolation_start_frame + 1 + i - initial_frame ) * ( 1.0 / Constants.PhysicsFrameRate ) + entry.packetHeader.avatarSampleTimeOffset;
if ( avatar_sample_time >= time )
{
interpolation_end_frame = interpolation_start_frame + 1 + i;
interpolation_end_time = avatar_sample_time + ( 1.0 / Constants.PhysicsFrameRate );
break;
}
}
}
}
// if current time is still > end time, we couldn't start a new interpolation so return.
if ( time > interpolation_end_time )
return false;
// we are in a valid interpolation, calculate t by looking at current time
// relative to interpolation start/end times and perform the interpolation.
float t = (float) Clamp( ( time - interpolation_start_time ) / ( interpolation_end_time - interpolation_start_time ), 0.0, 1.0 );
JitterBufferEntry a = GetEntry( (uint) ( interpolation_start_frame ) );
JitterBufferEntry b = GetEntry( (uint) ( interpolation_end_frame ) );
for ( int i = 0; i < a.numAvatarStates; ++i )
{
for ( int j = 0; j < b.numAvatarStates; ++j )
{
if ( a.avatarState[i].client_index == b.avatarState[j].client_index )
{
AvatarState.Interpolate( ref a.avatarState[i], ref b.avatarState[j], out output[numOutputAvatarStates], t );
numOutputAvatarStates++;
}
}
}
resetSequence = a.packetHeader.resetSequence;
return true;
}
Network.ReadStream readStream = new Network.ReadStream();
PacketSerializer packetSerializer = new PacketSerializer();
bool ReadStateUpdatePacketHeader( byte[] packetData, out Network.PacketHeader packetHeader )
{
Profiler.BeginSample( "ReadStateUpdatePacketHeader" );
readStream.Start( packetData );
bool result = true;
try
{
packetSerializer.ReadStateUpdatePacketHeader( readStream, out packetHeader );
}
catch ( Network.SerializeException )
{
Debug.Log( "error: failed to read state update packet header" );
packetHeader.sequence = 0;
packetHeader.ack = 0;
packetHeader.ack_bits = 0;
packetHeader.frameNumber = 0;
packetHeader.resetSequence = 0;
packetHeader.avatarSampleTimeOffset = 0.0f;
result = false;
}
readStream.Finish();
Profiler.EndSample();
return result;
}
bool ReadStateUpdatePacket( byte[] packetData, out Network.PacketHeader packetHeader, out int numAvatarStates, ref AvatarStateQuantized[] avatarState, out int numStateUpdates, ref int[] cubeIds, ref bool[] notChanged, ref bool[] hasDelta, ref bool[] perfectPrediction, ref bool[] hasPredictionDelta, ref ushort[] baselineSequence, ref CubeState[] cubeState, ref CubeDelta[] cubeDelta, ref CubeDelta[] predictionDelta )
{
Profiler.BeginSample( "ReadStateUpdatePacket" );
readStream.Start( packetData );
bool result = true;
try
{
packetSerializer.ReadStateUpdatePacket( readStream, out packetHeader, out numAvatarStates, avatarState, out numStateUpdates, cubeIds, notChanged, hasDelta, perfectPrediction, hasPredictionDelta, baselineSequence, cubeState, cubeDelta, predictionDelta );
}
catch ( Network.SerializeException )
{
Debug.Log( "error: failed to read state update packet" );
packetHeader.sequence = 0;
packetHeader.ack = 0;
packetHeader.ack_bits = 0;
packetHeader.frameNumber = 0;
packetHeader.resetSequence = 0;
packetHeader.avatarSampleTimeOffset = 0.0f;
numAvatarStates = 0;
numStateUpdates = 0;
result = false;
}
readStream.Finish();
Profiler.EndSample();
return result;
}
bool DecodePrediction( DeltaBuffer deltaBuffer, ushort currentSequence, ushort resetSequence, int numCubes, ref int[] cubeIds, ref bool[] perfectPrediction, ref bool[] hasPredictionDelta, ref ushort[] baselineSequence, ref CubeState[] cubeState, ref CubeDelta[] predictionDelta )
{
Profiler.BeginSample( "DecodePrediction" );
CubeState baselineCubeState = CubeState.defaults;
bool result = true;
#if !DISABLE_DELTA_ENCODING
for ( int i = 0; i < numCubes; ++i )
{
if ( perfectPrediction[i] || hasPredictionDelta[i] )
{
if ( deltaBuffer.GetCubeState( baselineSequence[i], resetSequence, cubeIds[i], ref baselineCubeState ) )
{
int baseline_sequence = baselineSequence[i];
int current_sequence = currentSequence;
if ( current_sequence < baseline_sequence )
current_sequence += 65536;
int baseline_position_x = baselineCubeState.position_x;
int baseline_position_y = baselineCubeState.position_y;
int baseline_position_z = baselineCubeState.position_z;
int baseline_linear_velocity_x = baselineCubeState.linear_velocity_x;
int baseline_linear_velocity_y = baselineCubeState.linear_velocity_y;
int baseline_linear_velocity_z = baselineCubeState.linear_velocity_z;
int baseline_angular_velocity_x = baselineCubeState.angular_velocity_x;
int baseline_angular_velocity_y = baselineCubeState.angular_velocity_y;
int baseline_angular_velocity_z = baselineCubeState.angular_velocity_z;
if ( current_sequence < baseline_sequence )
current_sequence += 65536;
int numFrames = current_sequence - baseline_sequence;
int predicted_position_x;
int predicted_position_y;
int predicted_position_z;
int predicted_linear_velocity_x;
int predicted_linear_velocity_y;
int predicted_linear_velocity_z;
int predicted_angular_velocity_x;
int predicted_angular_velocity_y;
int predicted_angular_velocity_z;
Prediction.PredictBallistic( numFrames,
baseline_position_x, baseline_position_y, baseline_position_z,
baseline_linear_velocity_x, baseline_linear_velocity_y, baseline_linear_velocity_z,
baseline_angular_velocity_x, baseline_angular_velocity_y, baseline_angular_velocity_z,
out predicted_position_x, out predicted_position_y, out predicted_position_z,
out predicted_linear_velocity_x, out predicted_linear_velocity_y, out predicted_linear_velocity_z,
out predicted_angular_velocity_x, out predicted_angular_velocity_y, out predicted_angular_velocity_z );
if ( perfectPrediction[i] )
{
#if DEBUG_DELTA_COMPRESSION
Assert.IsTrue( predicted_position_x == cubeDelta[i].absolute_position_x );
Assert.IsTrue( predicted_position_y == cubeDelta[i].absolute_position_y );
Assert.IsTrue( predicted_position_z == cubeDelta[i].absolute_position_z );
#endif // #if DEBUG_DELTA_COMPRESSION
cubeState[i].position_x = predicted_position_x;
cubeState[i].position_y = predicted_position_y;
cubeState[i].position_z = predicted_position_z;
cubeState[i].linear_velocity_x = predicted_linear_velocity_x;
cubeState[i].linear_velocity_y = predicted_linear_velocity_y;
cubeState[i].linear_velocity_z = predicted_linear_velocity_z;
cubeState[i].angular_velocity_x = predicted_angular_velocity_x;
cubeState[i].angular_velocity_y = predicted_angular_velocity_y;
cubeState[i].angular_velocity_z = predicted_angular_velocity_z;
}
else
{
cubeState[i].position_x = predicted_position_x + predictionDelta[i].position_delta_x;
cubeState[i].position_y = predicted_position_y + predictionDelta[i].position_delta_y;
cubeState[i].position_z = predicted_position_z + predictionDelta[i].position_delta_z;
#if DEBUG_DELTA_COMPRESSION
Assert.IsTrue( cubeState[i].position_x == cubeDelta[i].absolute_position_x );
Assert.IsTrue( cubeState[i].position_y == cubeDelta[i].absolute_position_y );
Assert.IsTrue( cubeState[i].position_z == cubeDelta[i].absolute_position_z );
#endif // #if DEBUG_DELTA_COMPRESSION
cubeState[i].linear_velocity_x = predicted_linear_velocity_x + predictionDelta[i].linear_velocity_delta_x;
cubeState[i].linear_velocity_y = predicted_linear_velocity_y + predictionDelta[i].linear_velocity_delta_y;
cubeState[i].linear_velocity_z = predicted_linear_velocity_z + predictionDelta[i].linear_velocity_delta_z;
cubeState[i].angular_velocity_x = predicted_angular_velocity_x + predictionDelta[i].angular_velocity_delta_x;
cubeState[i].angular_velocity_y = predicted_angular_velocity_y + predictionDelta[i].angular_velocity_delta_y;
cubeState[i].angular_velocity_z = predicted_angular_velocity_z + predictionDelta[i].angular_velocity_delta_z;
}
}
else
{
Debug.Log( "error: missing baseline for cube " + cubeIds[i] + " at sequence " + baselineSequence[i] + " (perfect prediction and prediction delta)" );
result = false;
break;
}
}
}
#endif // #if !DISABLE_DELTA_COMPRESSION
Profiler.EndSample();
return result;
}
bool DecodeNotChangedAndDeltas( DeltaBuffer deltaBuffer, ushort resetSequence, int numCubes, ref int[] cubeIds, ref bool[] notChanged, ref bool[] hasDelta, ref ushort[] baselineSequence, ref CubeState[] cubeState, ref CubeDelta[] cubeDelta )
{
Profiler.BeginSample( "DecodeNotChangedAndDeltas" );
bool result = true;
#if !DISABLE_DELTA_COMPRESSION
CubeState baselineCubeState = CubeState.defaults;
for ( int i = 0; i < numCubes; ++i )
{
if ( notChanged[i] )
{
if ( deltaBuffer.GetCubeState( baselineSequence[i], resetSequence, cubeIds[i], ref baselineCubeState ) )
{
#if DEBUG_DELTA_COMPRESSION
if ( baselineCubeState.position_x != cubeDelta[i].absolute_position_x )
{
Debug.Log( "expected " + cubeDelta[i].absolute_position_x + ", got " + baselineCubeState.position_x );
}
Assert.IsTrue( baselineCubeState.position_x == cubeDelta[i].absolute_position_x );
Assert.IsTrue( baselineCubeState.position_y == cubeDelta[i].absolute_position_y );
Assert.IsTrue( baselineCubeState.position_z == cubeDelta[i].absolute_position_z );
#endif // #if DEBUG_DELTA_COMPRESSION
cubeState[i] = baselineCubeState;
}
else
{
Debug.Log( "error: missing baseline for cube " + cubeIds[i] + " at sequence " + baselineSequence[i] + " (not changed)" );
result = false;
break;
}
}
else if ( hasDelta[i] )
{
if ( deltaBuffer.GetCubeState( baselineSequence[i], resetSequence, cubeIds[i], ref baselineCubeState ) )
{
cubeState[i].position_x = baselineCubeState.position_x + cubeDelta[i].position_delta_x;
cubeState[i].position_y = baselineCubeState.position_y + cubeDelta[i].position_delta_y;
cubeState[i].position_z = baselineCubeState.position_z + cubeDelta[i].position_delta_z;
#if DEBUG_DELTA_COMPRESSION
Assert.IsTrue( cubeState[i].position_x == cubeDelta[i].absolute_position_x );
Assert.IsTrue( cubeState[i].position_y == cubeDelta[i].absolute_position_y );
Assert.IsTrue( cubeState[i].position_z == cubeDelta[i].absolute_position_z );
#endif // #if DEBUG_DELTA_COMPRESSION
cubeState[i].linear_velocity_x = baselineCubeState.linear_velocity_x + cubeDelta[i].linear_velocity_delta_x;
cubeState[i].linear_velocity_y = baselineCubeState.linear_velocity_y + cubeDelta[i].linear_velocity_delta_y;
cubeState[i].linear_velocity_z = baselineCubeState.linear_velocity_z + cubeDelta[i].linear_velocity_delta_z;
cubeState[i].angular_velocity_x = baselineCubeState.angular_velocity_x + cubeDelta[i].angular_velocity_delta_x;
cubeState[i].angular_velocity_y = baselineCubeState.angular_velocity_y + cubeDelta[i].angular_velocity_delta_y;
cubeState[i].angular_velocity_z = baselineCubeState.angular_velocity_z + cubeDelta[i].angular_velocity_delta_z;
}
else
{
Debug.Log( "error: missing baseline for cube " + cubeIds[i] + " at sequence " + baselineSequence[i] + " (delta)" );
result = false;
break;
}
}
}
#endif // #if !DISABLE_DELTA_COMPRESSION
return result;
}
}