You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
i tried:
model = AutoModel.from_pretrained("/app/models/Qwen2.5-7B-Instruct", device='cpu')
but it do not work.
Error Logs:
saved layers already found in /app/models/Qwen2.5-7B-Instruct/splitted_model
either BetterTransformer or attn_implementation='sdpa' is available, creating model directly
either BetterTransformer or attn_implementation='sdpa' is available, creating model directly
running layers(cpu): 3%|█▍ | 1/31 [00:01<00:56, 1.88s/it]
Traceback (most recent call last):
File "/app/test.py", line 25, in
generation_output = model.generate(
^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/generation/utils.py", line 2255, in generate
result = self._sample(
^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/generation/utils.py", line 3254, in _sample
outputs = self(**model_inputs, return_dict=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/airllm/airllm_base.py", line 369, in call
return self.forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/airllm/airllm_base.py", line 569, in forward
new_seq = layer(seq, **kwargs)[0]
^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 259, in forward
hidden_states, self_attn_weights = self.self_attn(
^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 165, in forward
cos, sin = position_embeddings
^^^^^^^^
TypeError: cannot unpack non-iterable NoneType object
Here is the code:
`
from airllm import AutoModel
import torch
MAX_LENGTH = 128
model = AutoModel.from_pretrained("/app/models/Qwen2.5-7B-Instruct", device='cpu')
input_text = ['What is the capital of China?',]
input_tokens = model.tokenizer(input_text,
return_tensors="pt",
return_attention_mask=False,
truncation=True,
max_length=MAX_LENGTH)
generation_output = model.generate(
input_tokens['input_ids'],
max_new_tokens=5,
use_cache=True,
return_dict_in_generate=True)
model.tokenizer.decode(generation_output.sequences[0])
`
The text was updated successfully, but these errors were encountered:
i tried:
model = AutoModel.from_pretrained("/app/models/Qwen2.5-7B-Instruct", device='cpu')
but it do not work.
Error Logs:
saved layers already found in /app/models/Qwen2.5-7B-Instruct/splitted_model
either BetterTransformer or attn_implementation='sdpa' is available, creating model directly
either BetterTransformer or attn_implementation='sdpa' is available, creating model directly
running layers(cpu): 3%|█▍ | 1/31 [00:01<00:56, 1.88s/it]
Traceback (most recent call last):
File "/app/test.py", line 25, in
generation_output = model.generate(
^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/generation/utils.py", line 2255, in generate
result = self._sample(
^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/generation/utils.py", line 3254, in _sample
outputs = self(**model_inputs, return_dict=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/airllm/airllm_base.py", line 369, in call
return self.forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/airllm/airllm_base.py", line 569, in forward
new_seq = layer(seq, **kwargs)[0]
^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 259, in forward
hidden_states, self_attn_weights = self.self_attn(
^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 165, in forward
cos, sin = position_embeddings
^^^^^^^^
TypeError: cannot unpack non-iterable NoneType object
Here is the code:
`
from airllm import AutoModel
import torch
MAX_LENGTH = 128
model = AutoModel.from_pretrained("/app/models/Qwen2.5-7B-Instruct", device='cpu')
input_text = ['What is the capital of China?',]
input_tokens = model.tokenizer(input_text,
return_tensors="pt",
return_attention_mask=False,
truncation=True,
max_length=MAX_LENGTH)
generation_output = model.generate(
input_tokens['input_ids'],
max_new_tokens=5,
use_cache=True,
return_dict_in_generate=True)
model.tokenizer.decode(generation_output.sequences[0])
`
The text was updated successfully, but these errors were encountered: