-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolar_transform.py
487 lines (384 loc) · 20.1 KB
/
polar_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import numpy as np
import torch
from typing import Tuple, Union
from kornia.geometry.transform import remap
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.set_default_device('cuda')
class PolarTransformModule(torch.nn.Module):
def __init__(self, tensor: torch.Tensor,
inner_radius: Union[float, int] = 0, outer_radius: Union[float, int, None] = None,
upscale_factor: Tuple[float, float] = (4., 4.)):
super(PolarTransformModule, self).__init__()
self.upscale_factor = upscale_factor
# inner radius, in px or px fraction
self.inner_radius = inner_radius
# get max radius up to which there is non-zero data
self.radius_data, self.radius_data_deprojected = self.compute_data_radius(tensor)
self.radius_data_px = int(self.radius_data * np.ceil(tensor.shape[-2] / 2.))
safety_margin = 1 # in px
self.outer_radius_gap_px = int(
np.clip(((1. - (self.radius_data_deprojected))
* np.ceil(tensor.shape[-2] / 2.)) - safety_margin,
0, np.inf
)
)
# outer radius, in px or px fraction
if outer_radius is None:
outer_radius = self.radius_data_px
self.outer_radius = outer_radius
# SHAPES
# shape: (*, x, y)
self.original_shape = tensor.shape
# define radii
self.radius_normal = 1.
self.radius_diagonal = np.sqrt(2.)
self.px_normal = int(np.ceil(tensor.shape[-2] / 2.))
self.radius_normal_px = int(self.radius_normal * self.px_normal)
self.radius_diagonal_px = int(self.radius_diagonal * self.px_normal)
# shape: (*, x, y)
self.cartesian_shape = torch.tensor([*tensor.shape])
self.cartesian_center = torch.floor(torch.tensor([
tensor.shape[-2] / 2.,
tensor.shape[-1] / 2.
])).to(torch.int)
# polar shape: (*, rho, phi)
cross = torch.tensor([
[self.cartesian_shape[-1] - 1, self.cartesian_center[1]],
[0, self.cartesian_center[1]],
[self.cartesian_center[0], self.cartesian_shape[-2] - 1],
[self.cartesian_center[0], 0]
])
self.radius_size = torch.ceil(self.upscale_factor[-2] * torch.abs(
cross - self.cartesian_center
).max() * 2. * (self.outer_radius - self.inner_radius) / self.radius_diagonal_px).to(torch.int64).item()
self.angle_size = int(self.upscale_factor[-1] * torch.max(self.cartesian_shape[-2:]))
# shape: (*, rho, phi)
self.polar_shape = torch.tensor([
*tensor.shape[:-2],
self.radius_size,
self.angle_size,
]).to(torch.int)
# PIXEL FLOW MAPS
(self.map_cartesian_to_polar_x, self.map_cartesian_to_polar_y), self.phase_mask = self.build_cart2pol_maps()
(self.map_polar_to_cartesian_x, self.map_polar_to_cartesian_y), self.radius_mask = self.build_pol2cart_maps()
self._unsqueeze_maps()
def cart2pol(self, cart_tensor: torch.Tensor) -> torch.Tensor:
polar_tensor = remap(
cart_tensor.view(1, -1, *cart_tensor.shape[-2:]),
map_x=self.map_cartesian_to_polar_x, map_y=self.map_cartesian_to_polar_y,
align_corners=True,
normalized_coordinates=False,
padding_mode="border",
mode="bilinear",
)
polar_tensor = polar_tensor.view(*cart_tensor.shape[:-2], *polar_tensor.shape[-2:])
return (polar_tensor * self.phase_mask).contiguous()
def pol2cart(self, polar_tensor: torch.Tensor) -> torch.Tensor:
# kornia expects the incoming tensor to be in (*, phi, rho) to be aligned with the x and y map,
# but the tensor comes in as (*, rho, phi) with our convention, so we switch the map dimensions
cart_tensor = remap(
polar_tensor.view(1, -1, *polar_tensor.shape[-2:]),
map_x=self.map_polar_to_cartesian_y, map_y=self.map_polar_to_cartesian_x,
align_corners=True,
normalized_coordinates=False,
padding_mode="border",
mode="bilinear",
)
cart_tensor = cart_tensor.view(*polar_tensor.shape[:-2], *cart_tensor.shape[-2:])
return (cart_tensor * self.radius_mask).contiguous()
def pol2cart_masked_values(self, polar_tensor: torch.Tensor) -> torch.Tensor:
cart_tensor = self.pol2cart(polar_tensor=polar_tensor)
return cart_tensor[..., self.radius_mask]
def car2pol_masked_values(self, cart_tensor: torch.Tensor) -> torch.Tensor:
polar_tensor = self.cart2pol(cart_tensor=cart_tensor)
return polar_tensor[..., self.phase_mask]
def build_cart2pol_maps(self):
rho = self.linspace(self.inner_radius, self.outer_radius, self.radius_size)
phi = self.linspace(0., 2. * torch.pi, self.angle_size)
rr, pp = torch.meshgrid(rho, phi, indexing="ij")
map_cartesian_to_polar_x = rr * torch.cos(pp) + self.cartesian_center[0]
map_cartesian_to_polar_y = rr * torch.sin(pp) + self.cartesian_center[1]
r_max = torch.sqrt(1. + 2 *
torch.minimum(torch.square(torch.sin(phi)),
torch.square(torch.cos(phi)),
)
) * self.radius_normal_px
phase_mask = torch.lt(rr, r_max)
return (map_cartesian_to_polar_x, map_cartesian_to_polar_y), phase_mask
def build_pol2cart_maps(self):
scale_radius = self.polar_shape[-2] / (self.outer_radius - self.inner_radius)
scale_angle = self.polar_shape[-1] / (2. * torch.pi)
x = self.linspace(- self.cartesian_shape[-2] / 2., self.cartesian_shape[-2] / 2., self.cartesian_shape[-2])
y = self.linspace(- self.cartesian_shape[-1] / 2., self.cartesian_shape[-1] / 2., self.cartesian_shape[-1])
yy, xx = torch.meshgrid(x, y, indexing="ij")
# get x and y pixel flow from polar to cartesian
map_polar_to_cartesian_x = torch.sqrt(torch.square(xx) + torch.square(yy))
radius_mask = torch.logical_and(
torch.gt(map_polar_to_cartesian_x, self.inner_radius),
torch.lt(map_polar_to_cartesian_x, self.outer_radius)
)
map_polar_to_cartesian_x = map_polar_to_cartesian_x - self.inner_radius
map_polar_to_cartesian_x = map_polar_to_cartesian_x * scale_radius
map_polar_to_cartesian_y = torch.atan2(yy, xx)
map_polar_to_cartesian_y = (map_polar_to_cartesian_y + 2. * torch.pi) % (2. * torch.pi)
map_polar_to_cartesian_y = map_polar_to_cartesian_y * scale_angle
return (map_polar_to_cartesian_x, map_polar_to_cartesian_y), radius_mask
def _unsqueeze_maps(self):
# unsqueeze for kornia
self.map_cartesian_to_polar_x = self.map_cartesian_to_polar_x.unsqueeze(0).contiguous()
self.map_cartesian_to_polar_y = self.map_cartesian_to_polar_y.unsqueeze(0).contiguous()
self.map_polar_to_cartesian_x = self.map_polar_to_cartesian_x.unsqueeze(0).contiguous()
self.map_polar_to_cartesian_y = self.map_polar_to_cartesian_y.unsqueeze(0).contiguous()
@staticmethod
def linspace(start, end, steps):
return torch.linspace(start, end, steps + 1)[:-1].contiguous()
@staticmethod
def compute_data_radius(tensor: torch.Tensor) -> Tuple[float, float]:
"""
Compute the radius up which to there is meaningful data in the image cube.
The radius is computed as the maximum radius up to which there is non-zero data in the cube.
Then the position of the element associated with the maximum radius is used to compute the deprojected radius.
The deprojected radius can be used to trim the cube.
"""
try:
# data radius is in units of normal radii
x = torch.linspace(-1., 1., tensor.shape[-2])
y = torch.linspace(-1., 1., tensor.shape[-1])
yy, xx = torch.meshgrid(x, y, indexing="ij")
radius = torch.sqrt(torch.square(xx) + torch.square(yy))
mask = torch.eq(torch.sum(torch.abs(tensor), dim=(0, 1)), 0.)
masked_radius = ~mask * radius # invert mask: elements=0: True -> elements!=0: True
radius_data = masked_radius.max().item()
max_radius_idx_flat = torch.argmax(masked_radius) # freaking torch and flat argmax?!
max_radius_idx = [(max_radius_idx_flat % tensor.shape[-2]),
max_radius_idx_flat // tensor.shape[-2]]
theta_max = torch.atan2(max_radius_idx[1] - tensor.shape[-2] / 2,
max_radius_idx[0] - tensor.shape[-1] / 2)
data_radius_deprojected = torch.maximum(
torch.abs(torch.cos(theta_max) * radius_data),
torch.abs(torch.sin(theta_max) * radius_data),
).item()
except RuntimeError:
radius_data = np.sqrt(2.)
data_radius_deprojected = 1.
return radius_data, data_radius_deprojected
def show_maps(self, rr, pp, xx, yy):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 4, figsize=(24, 8), constrained_layout=True)
ax = axes[0, 0]
im = ax.imshow(rr.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("rr")
ax = axes[1, 0]
im = ax.imshow(pp.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("pp")
ax = axes[0, 1]
im = ax.imshow(self.map_cartesian_to_polar_x.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("map_cartesian_to_polar_x")
ax = axes[1, 1]
im = ax.imshow(self.map_cartesian_to_polar_y.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("map_cartesian_to_polar_y")
ax = axes[0, 2]
im = ax.imshow(xx.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("xx")
ax = axes[1, 2]
im = ax.imshow(yy.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("yy")
ax = axes[0, 3]
im = ax.imshow(self.map_polar_to_cartesian_x.squeeze().cpu().numpy(), origin="lower", cmap="seismic",
# vmin=-1, vmax=1.
)
plt.colorbar(im, ax=ax)
ax.set_title("map_polar_to_cartesian_x")
ax = axes[1, 3]
im = ax.imshow(self.map_polar_to_cartesian_y.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("map_polar_to_cartesian_y")
plt.show()
if __name__ == "__main__":
import matplotlib.pyplot as plt
with torch.no_grad():
torch.manual_seed(42)
X, Y = 290, 290
noise = 1e-2
annulus_radius_inner = 50
annulus_radius_outer = 75
x = torch.linspace(-1., 1., X + 1)[:-1]
y = torch.linspace(-1., 1., Y + 1)[:-1]
xx, yy = torch.meshgrid(x, y, indexing="ij")
radius = torch.sqrt(torch.square(xx) + torch.square(yy))
phase = torch.atan2(yy, xx)
radius_cube = torch.zeros(1, 1, *radius.shape)
radius_cube[:, :] = radius
phase_cube = torch.zeros_like(radius_cube)
phase_cube[:, :] = phase
# =============================================================================
# NOISELESS CASE
# expected input is always 4D with intended shape (channels, samples, x, y)
# any shape like (any, any, x, y) is accepted, only the trailing two dimensions are used
# =============================================================================
# RADIUS
polar_transform = PolarTransformModule(radius_cube)
polar_radius_cube = polar_transform.cart2pol(cart_tensor=radius_cube)
cart_radius_cube = polar_transform.pol2cart(polar_tensor=polar_radius_cube)
err_radius_cube = cart_radius_cube - radius_cube
# PHASE
# we could just reuse the previous instance since the cubes are the same shape
polar_transform = PolarTransformModule(phase_cube)
polar_phase_cube = polar_transform.cart2pol(cart_tensor=phase_cube)
cart_phase_cube = polar_transform.pol2cart(polar_tensor=polar_phase_cube)
err_phase_cube = cart_phase_cube - phase_cube
# ANNULUS (RADIUS)
polar_transform = PolarTransformModule(
radius_cube, inner_radius=annulus_radius_inner, outer_radius=annulus_radius_outer) # demonstrate annulus
annulus_polar_radius_cube = polar_transform.cart2pol(cart_tensor=radius_cube)
annulus_cart_radius_cube = polar_transform.pol2cart(polar_tensor=annulus_polar_radius_cube)
annulus_cart_radius_cube_vals = polar_transform.pol2cart_masked_values(polar_tensor=annulus_polar_radius_cube)
# PLOTS
fig, axes = plt.subplots(3, 4, figsize=(18, 12), constrained_layout=True)
ax = axes[0, 0]
im = ax.imshow(radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("radius_cube")
ax = axes[1, 0]
im = ax.imshow(phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="hsv")
plt.colorbar(im, ax=ax)
ax.set_title("phase_cube")
ax = axes[2, 0]
ax.axis("off")
ax = axes[0, 1]
im = ax.imshow(polar_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("polar_radius_cube")
ax = axes[1, 1]
im = ax.imshow(polar_phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="hsv")
plt.colorbar(im, ax=ax)
ax.set_title("polar_phase_cube")
ax = axes[2, 1]
im = ax.imshow(annulus_polar_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic", aspect=8.)
plt.colorbar(im, ax=ax)
ax.set_title("annulus_polar_radius_cube")
ax = axes[0, 2]
im = ax.imshow(cart_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("cart_radius_cube")
ax = axes[1, 2]
im = ax.imshow(cart_phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="hsv")
plt.colorbar(im, ax=ax)
ax.set_title("cart_phase_cube")
ax = axes[2, 2]
im = ax.imshow(annulus_cart_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic",
vmin=annulus_cart_radius_cube_vals.min(), vmax=annulus_cart_radius_cube_vals.max())
plt.colorbar(im, ax=ax)
ax.set_title("annulus_cart_radius_cube")
ax = axes[0, 3]
im = ax.imshow(err_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("err_radius_cube")
ax = axes[1, 3]
im = ax.imshow(err_phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("err_phase_cube")
ax = axes[2, 3]
color = radius_cube[:, :, polar_transform.radius_mask].flatten().cpu().numpy()
color = (color - color.min()) / (color.max() - color.min())
ax.scatter(
phase_cube[:, :, polar_transform.radius_mask].flatten().cpu().numpy(),
annulus_cart_radius_cube_vals.flatten().cpu().numpy(),
s=4.0, alpha=0.75, marker="x", c=color, cmap="gist_rainbow"
)
ax.set_xlabel("phase")
ax.set_ylabel("reconstructed radius")
ax.set_title("annulus_cart_radius_cube_vals")
fig.suptitle("Polar Transform (NOISELESS CASE)")
# fig.savefig("polar_transform_no_noise.png", dpi=300)
plt.show()
# =============================================================================
# NOISY CASE
# =============================================================================
noise = torch.randn_like(radius_cube) * noise
radius_cube += noise
phase_cube += noise
# RADIUS
polar_transform = PolarTransformModule(radius_cube)
polar_radius_cube = polar_transform.cart2pol(cart_tensor=radius_cube)
cart_radius_cube = polar_transform.pol2cart(polar_tensor=polar_radius_cube)
err_radius_cube = cart_radius_cube - radius_cube
# PHASE
# we could just reuse the previous instance since the cubes are the same shape
polar_transform = PolarTransformModule(phase_cube)
polar_phase_cube = polar_transform.cart2pol(cart_tensor=phase_cube)
cart_phase_cube = polar_transform.pol2cart(polar_tensor=polar_phase_cube)
err_phase_cube = cart_phase_cube - phase_cube
# ANNULUS (RADIUS)
polar_transform = PolarTransformModule(
radius_cube, inner_radius=annulus_radius_inner, outer_radius=annulus_radius_outer) # demonstrate annulus
annulus_polar_radius_cube = polar_transform.cart2pol(cart_tensor=radius_cube)
annulus_cart_radius_cube = polar_transform.pol2cart(polar_tensor=annulus_polar_radius_cube)
annulus_cart_radius_cube_vals = polar_transform.pol2cart_masked_values(polar_tensor=annulus_polar_radius_cube)
# PLOTS
fig, axes = plt.subplots(3, 4, figsize=(18, 12), constrained_layout=True)
ax = axes[0, 0]
im = ax.imshow(radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("radius_cube")
ax = axes[1, 0]
im = ax.imshow(phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="hsv")
plt.colorbar(im, ax=ax)
ax.set_title("phase_cube")
ax = axes[2, 0]
im = ax.imshow(noise.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("noise")
ax = axes[0, 1]
im = ax.imshow(polar_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("polar_radius_cube")
ax = axes[1, 1]
im = ax.imshow(polar_phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="hsv")
plt.colorbar(im, ax=ax)
ax.set_title("polar_phase_cube")
ax = axes[2, 1]
im = ax.imshow(annulus_polar_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic", aspect=8.)
plt.colorbar(im, ax=ax)
ax.set_title("annulus_polar_radius_cube")
ax = axes[0, 2]
im = ax.imshow(cart_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("cart_radius_cube")
ax = axes[1, 2]
im = ax.imshow(cart_phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="hsv")
plt.colorbar(im, ax=ax)
ax.set_title("cart_phase_cube")
ax = axes[2, 2]
im = ax.imshow(annulus_cart_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic",
vmin=annulus_cart_radius_cube_vals.min(), vmax=annulus_cart_radius_cube_vals.max())
plt.colorbar(im, ax=ax)
ax.set_title("annulus_cart_radius_cube")
ax = axes[0, 3]
im = ax.imshow(err_radius_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("err_radius_cube")
ax = axes[1, 3]
im = ax.imshow(err_phase_cube.squeeze().cpu().numpy(), origin="lower", cmap="seismic")
plt.colorbar(im, ax=ax)
ax.set_title("err_phase_cube")
ax = axes[2, 3]
color = radius_cube[:, :, polar_transform.radius_mask].flatten().cpu().numpy()
color = (color - color.min()) / (color.max() - color.min())
ax.scatter(
phase_cube[:, :, polar_transform.radius_mask].flatten().cpu().numpy(),
annulus_cart_radius_cube_vals.flatten().cpu().numpy(),
s=4.0, alpha=0.75, marker="x", c=color, cmap="gist_rainbow"
)
ax.set_xlabel("phase")
ax.set_ylabel("reconstructed radius")
ax.set_title("annulus_cart_radius_cube_vals")
fig.suptitle("Polar Transform (NOISY CASE)")
# fig.savefig("polar_transform_with_noise.png", dpi=300)
plt.show()