-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_test_seg.py
277 lines (236 loc) · 10.2 KB
/
generate_test_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import time
import os
import math
import argparse
from glob import glob
from collections import OrderedDict
import random
import warnings
import datetime
import numpy as np
from tqdm import tqdm
from PIL import Image
from sklearn.model_selection import train_test_split
import joblib
from skimage.io import imread
from net import unet_transformer
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import datasets, models, transforms
from dataset.dataset import Dataset
import matplotlib.pyplot as plt
from utilities.metrics import dice_coef,dice_coef_test, batch_iou, mean_iou, iou_score
import utilities.losses as losses
from utilities.utils import str2bool, count_params
import pandas as pd
from net import unet
from utilities.lr_policy import PolyLR
# from net.small_ecanet import PraNet121
# 换模型需要修改的地方
arch_names = list(unet.__dict__.keys())
loss_names = list(losses.__dict__.keys())
loss_names.append('BCEWithLogitsLoss')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--name', default=None,
help='model name: (default: arch+timestamp)')
# 换模型需要修改的地方
parser.add_argument('--arch', '-a', metavar='ARCH', default='Unet',
choices=arch_names,
help='model architecture: ' +
' | '.join(arch_names) +
' (default: NestedUNet)')
# 换数据集需要修改的地方
parser.add_argument('--dataset', default="LiTS",
help='dataset name')
parser.add_argument('--input-channels', default=3, type=int,
help='input channels')
parser.add_argument('--image-ext', default='npy',
help='image file extension')
parser.add_argument('--mask-ext', default='npy',
help='mask file extension')
parser.add_argument('--aug', default=False, type=str2bool)
parser.add_argument('--loss', default='BCEDiceLoss',
choices=loss_names,
help='loss: ' +
' | '.join(loss_names) +
' (default: BCEDiceLoss)')
# 换模型需要修改的地方
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--early-stop', default=50, type=int,
metavar='N', help='early stopping (default: 30)')
# 换模型需要修改的地方
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size (default: 16)')
parser.add_argument('--optimizer', default='Adam',
choices=['Adam', 'SGD'],
help='loss: ' +
' | '.join(['Adam', 'SGD']) +
' (default: Adam)')
parser.add_argument('--lr', '--learning-rate', default=3e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum')
parser.add_argument('--weight-decay', default=1e-4, type=float,
help='weight decay')
parser.add_argument('--nesterov', default=False, type=str2bool,
help='nesterov')
parser.add_argument('--deepsupervision', default=False, type=str2bool,
help='nesterov')
parser.add_argument('--checkpoint', default='U:/paper3/sanet_all_deformable2.pth',
help='image file extension')
parser.add_argument('--model_name', default="unetplusplus",
help='dataset name')
parser.add_argument('--save_path', default="U:/paper3testimg/pred_tmp/",
help='dataset name')
args = parser.parse_args()
return args
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def validate(args, val_loader, model):
ious = AverageMeter()
dices_1s = AverageMeter()
dices_2s = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
for i, (input, target, filename) in tqdm(enumerate(val_loader), total=len(val_loader)):
input = input.cuda()
target = target.cuda()
# compute output
if args.deepsupervision:
outputs = model(input)
loss = 0
else:
output = model(input)
iou = iou_score(output, target)
dice_1 = dice_coef_test(output, target)[0]
dice_2 = dice_coef_test(output, target)[1]
if dice_1>0.98 and dice_2>0.95:
print("dice1={}|dice2={}*** ->{}".format(dice_1,dice_2,filename))
output = torch.sigmoid(output)
# print("input shape = ", input[0].shape)
raw = input.detach().cpu().numpy()[0][1]
# print("raw shape = ",raw.shape)
pred_liver = output.detach().cpu().numpy()[0][0]
pred_tumor = output.detach().cpu().numpy()[0][1]
liver_gt = target.detach().cpu().numpy()[0][0]
tumor_gt = target.detach().cpu().numpy()[0][1]
pred_liver[pred_liver > 0.5] = 255
pred_liver[pred_liver <= 0.5] = 0
"""
pred_liver[pred_liver > 0.5] = 133
pred_liver[pred_liver <= 0.5] = 0
pred_tumor[pred_tumor > 0.5] = 133
pred_tumor[pred_tumor <= 0.5] = 0
pred_liver[pred_tumor > 1] = 255
"""
liver_gt[liver_gt>0] = 133
liver_gt[tumor_gt>0] = 255
im = Image.fromarray(np.uint8(pred_liver))
im1 = Image.fromarray(np.uint8(liver_gt))
im.convert('L').save(args.save_path + filename[0] + '.jpg')
# im1.convert('L').save("U:/paper3testimg/groundtruth/" + filename[0] + '.jpg')
# rawout.convert('L').save("U:/paper3testimg/rawimg/" + filename[0] + '.jpg')
ious.update(iou, input.size(0))
dices_1s.update(torch.tensor(dice_1), input.size(0))
dices_2s.update(torch.tensor(dice_2), input.size(0))
log = OrderedDict([
('iou', ious.avg),
('dice_1', dices_1s.avg),
('dice_2', dices_2s.avg)
])
print("log = ",log)
return log
def main():
args = parse_args()
# args.dataset = "datasets"
# Data loading code
val_img_paths = glob('U:/paper3testimg/test_image/*')
val_mask_paths = glob('U:/paper3testimg/test_mask/*')
print("val_num:%s" % str(len(val_img_paths)))
# create model
# 换模型需要修改的地方
print("=> creating model %s" % args.arch)
# from net.DBANet import DBANet
# model = DBANet(3)
# from net.unet_transformer import U_Net_DSPP_Transformer
# model = U_Net_DSPP_Transformer(get_type="global")
# import network
# model = network.deeplabv3plus_resnet50(num_classes=2,pretrained_backbone=False)
# from net.DBANet_deformable import DBANet
# model = DBANet(3)
if args.model_name=='unet':
model = unet.U_Net(args)
model.load_state_dict(torch.load("U:/paper3/unet32_135.pth"))
elif args.model_name=="our_transformer":
model = unet_transformer.U_Net_DSPP_Transformer(get_type="mix")
from net.lsyformer import U_Net_DSPP_Transformer
model = U_Net_DSPP_Transformer(get_type="mix")
elif args.model_name=="qaunet":
from net import qau_net
model = qau_net.QAU_Net(3,2)
elif args.model_name =="transunet":
from transunet.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
from transunet.vit_seg_modeling import VisionTransformer as ViT_seg
config_vit = CONFIGS_ViT_seg["R50-ViT-B_16"]
config_vit.n_classes = 2
config_vit.n_skip = 3
model = ViT_seg(config_vit, img_size=336, num_classes=config_vit.n_classes)
elif args.model_name =="unetplusplus":
from net import unetplusplus
model = unetplusplus.NestedUNet(2)
model.load_state_dict(torch.load("U:/paper3/unetplus_66.pth"))
elif args.model_name =="medical_transformer":
import lib
model = lib.models.axialnet.MedT(img_size=336,imgchan=3)
elif args.model_name=="resunet":
from net import resunet
model = resunet.ResUnet(3)
else:
model = unet.U_Net(args)
model = model.cuda()
print(count_params(model))
val_dataset = Dataset(args, val_img_paths, val_mask_paths, val=True)
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30,90,150], gamma=0.3)
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[38], gamma=0.3)
# scheduler = PolyLR(optimizer,max_iters = 200,power=0.8)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
pin_memory=True,
drop_last=False)
best_loss = 100
best_iou = 0
trigger = 0
first_time = time.time()
lr_list = []
val_log = validate(args, val_loader, model)
print('val_iou %.4f - val_dice_1 %.4f - val_dice_2 %.4f'% (val_log['iou'], val_log['dice_1'], val_log['dice_2']))
end_time = time.time()
print("time:", (end_time - first_time) / 60)
torch.cuda.empty_cache()
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0,2'
main()