-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_robust.py
226 lines (172 loc) · 7.38 KB
/
train_robust.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from PIL import Image
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
from model import ESSA_UNet
from dataset import fusion_dataset_gt
import argparse
import datetime
import time
import logging
import os.path as osp
import os
from logger import setup_logger
from loss import fusion_loss_adv
import torch
from torch.utils.data import DataLoader
import warnings
from rgb2ycbcr import RGB2YCrCb, YCrCb2RGB
import random
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as scio
from torchvision.transforms import Resize
from collections import OrderedDict
from torch.nn.parallel import DataParallel
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
warnings.filterwarnings('ignore')
def seed_everything(seed=3407):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def attack(image_vis, image_ir, image_gt, model, loss, step_size=1/255, total_steps=3, epsilon=4/255):
# seed_everything()
model.eval()
image_vis = image_vis.cuda()
image_ir = image_ir.cuda()
image_gt = image_gt.cuda()
image_gt_ycbcr = RGB2YCrCb(image_gt)
image_gt_ycbcr = image_gt_ycbcr[:, : 1]
image_vis_ycrcb = RGB2YCrCb(image_vis)
random_init_vis = torch.rand_like(image_vis)*0.0003
random_init_ir = torch.rand_like(image_ir)*0.0003
adv_img_vis = Variable(torch.clamp(image_vis.data+random_init_vis.data,0,1), requires_grad = True)
adv_img_ir = Variable(torch.clamp(image_ir.data+random_init_ir.data,0,1), requires_grad = True)
for t in range(total_steps):
adv_image_vis_ycrcb = RGB2YCrCb(adv_img_vis)
logits = model(adv_image_vis_ycrcb, adv_img_ir)
# loss_total, loss_in, loss_grad, loss_ssim = loss(image_vis_ycrcb, image_ir, logits)
loss_total, loss_mse, loss_ssim = loss(logits, image_gt_ycbcr)
loss_total.backward()
print(loss_total)
with torch.no_grad():
# update image_vis_adv
grad_info = step_size * adv_img_vis.grad.data.sign()
adv_img_vis = adv_img_vis.data + grad_info
eta = torch.clamp(adv_img_vis.data - image_vis.data, -epsilon, epsilon)
adv_img_vis = image_vis.data + eta
grad_info = step_size * adv_img_ir.grad.data.sign()
adv_img_ir = adv_img_ir.data + grad_info
eta = torch.clamp(adv_img_ir.data - image_ir.data, -epsilon, epsilon)
adv_img_ir = image_ir.data + eta
adv_img_vis = Variable(torch.clamp(adv_img_vis.data,0,1), requires_grad = True)
adv_img_ir = Variable(torch.clamp(adv_img_ir.data,0,1), requires_grad = True)
return adv_img_vis, adv_img_ir
def train(logger=None):
seed_everything()
lr_start = 0.001
model_path = './model'
model_path = os.path.join(model_path)
train_model = ESSA_UNet()
train_model.cuda()
train_model.train()
optimizer = torch.optim.Adam(train_model.parameters(), lr=lr_start)
ir_path = '/home/lijiawei/local/dataset/train/ir/'
vis_path = '/home/lijiawei/local/dataset/train/vis/'
gt_path = '/home/lijiawei/local/dataset/train/gt/'
train_dataset = fusion_dataset_gt(ir_path=ir_path, vis_path=vis_path, gt_path=gt_path)
print("The length of training dataset:{}".format(train_dataset.length))
train_loader = DataLoader(
dataset=train_dataset,
batch_size=4,
shuffle=True,
num_workers=0,
pin_memory=True,
drop_last=True,
)
train_loader.n_iter = len(train_loader)
train_loss = fusion_loss_adv()
epoch = 50
st = glob_st = time.time()
logger.info('Train start!')
# plot_loss_total = [] # 画图用
for epo in range(0, epoch):
lr_start = 0.001
lr_decay = 0.75
lr_epo = lr_start * lr_decay ** (epo - 1)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_epo
for it, (image_vis, image_ir, image_gt, name) in enumerate(train_loader):
train_model.train()
image_vis = Variable(image_vis).cuda()
image_vis_ycrcb = RGB2YCrCb(image_vis)
image_ir = Variable(image_ir).cuda()
image_gt = Variable(image_gt).cuda()
image_gt_ycbcr = RGB2YCrCb(image_gt)
image_gt_ycbcr = image_gt_ycbcr[:, : 1]
logits = train_model(image_vis_ycrcb, image_ir) # inputs
# 生成对抗样本
# image_vis_adv, image_ir_adv = attack_think2(image_vis, image_ir, logits, train_model, train_loss_adv)
image_vis_adv, image_ir_adv = attack(image_vis, image_ir, image_gt, train_model, train_loss)
logits_adv = train_model(image_vis_adv, image_ir_adv)
optimizer.zero_grad()
loss_total, loss_mse, loss_ssim = train_loss(logits, image_gt_ycbcr)
loss_total_adv, loss_mse_adv, loss_ssim_adv = train_loss(logits_adv, image_gt_ycbcr)
loss = loss_total + loss_total_adv
loss.backward()
optimizer.step()
ed = time.time()
t_intv, glob_t_intv = ed - st, ed - glob_st
now_it = train_loader.n_iter * epo + it + 1
eta = int((train_loader.n_iter * epoch - now_it)
* (glob_t_intv / (now_it)))
eta = str(datetime.timedelta(seconds=eta))
if now_it % 10 == 0:
msg = ', '.join(
[
'step: {it}/{max_it}',
'loss: {loss:.4f}',
'loss_total: {loss_total:.4f}',
'loss_mse: {loss_mse:.4f}',
'loss_ssim: {loss_ssim:.4f}',
# 对抗loss
'loss_total_adv: {loss_total_adv:.4f}',
'loss_mse_adv: {loss_mse_adv:.4f}',
'loss_ssim_adv: {loss_ssim_adv:.4f}',
'eta: {eta}',
'time: {time:.4f}',
]
).format(
it=now_it,
max_it=train_loader.n_iter * epoch,
loss=loss.item(),
loss_total=loss_total.item(),
loss_mse=loss_mse.item(),
loss_ssim=loss_ssim.item(),
# 对抗loss
loss_total_adv=loss_total_adv.item(),
loss_mse_adv=loss_mse_adv.item(),
loss_ssim_adv=loss_ssim_adv.item(),
time=t_intv,
eta=eta,
)
logger.info(msg)
st = ed
# loss图
# plot_loss_total.append((loss_total.cpu().detach().numpy()))
# loss_filename_path1 = "D:\\Python\\code_lok18\\myMedicalCode\\loss_chat\\" + "loss-total_a=0.8" + ".mat"
# scio.savemat(loss_filename_path1, {'loss_total': plot_loss_total})
train_model_file = os.path.join(model_path, 'rebuttal_13.pth')
torch.save(train_model.state_dict(), train_model_file)
logger.info("Train model save as: {}".format(train_model_file))
logger.info('\n')
if __name__ == "__main__":
logpath = './logs'
logger = logging.getLogger()
setup_logger(logpath)
train(logger)
print("Train finish!")