Skip to content
This repository was archived by the owner on Jan 9, 2023. It is now read-only.

Latest commit

 

History

History

mlp_lesson1

Introductino to Scikit-learn

Ch1 Introduction

  • Scikit-learn focuses on modelling data
    • Datasets
    • Supervised models
    • Feature selection
    • Clustering of unlabelled data
    • Dataset transformation
      • Preprocessing
      • Feature extraction
      • Normalisation
      • Dimensionality reduction
    • Model selection and evaluation
      • Cross validation
      • Hyperparameter tuning
      • Classification metrics
    • Ensemble methods
      • Boosting
      • Bagging
      • Random Forest

Ch2 Classification Pipeline

  • Arrange data into X and y
  • Choose the model
  • Initialise your model with some hyperparameters
  • Fit model to X and y
  • Predict labels y_hat_test for X_test
  • Evaluate model performance by comparing y_hat_test against y_test

Ch5 Preprocessing

  • preprocessing.scale(x)
    • Scale to zero mean and unit variance
  • preprocessing.MinMaxScalar().fit_transform(x)
    • Scale values from 0 to 1

Ch6 Classification Models

  • kNN
    • sklearn.neighbors - KNeighborClassifier
  • Decision Tree
    • sklearn.tree - DecisionTreeClassifier
  • Logistic Regression
    • sklearn.linear_model - LogisiticRegression
  • Random Forests
    • sklearn.ensemble - RandomForestClassifier
  • Naive Bayes (Gaussian)
    • sklearn.ensemble - GaussianNB
  • Support Vector Machine
    • sklearn.svm - SVC
  • Multiplayer Perceptron (Neural Nets)
    • sklearn.neural_network - MLPClassifier