This repository was archived by the owner on Aug 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathget_model_answer.py
95 lines (82 loc) · 2.95 KB
/
get_model_answer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
import torch
import os
import json
from tqdm import tqdm
import shortuuid
import ray
from fastchat.model import get_conversation_template
def run_eval(model_path, model_id, question_file, answer_file, num_gpus):
# split question file into num_gpus files
ques_jsons = []
with open(os.path.expanduser(question_file), "r") as ques_file:
for line in ques_file:
ques_jsons.append(line)
chunk_size = len(ques_jsons) // num_gpus
ans_handles = []
for i in range(0, len(ques_jsons), chunk_size):
ans_handles.append(
get_model_answers.remote(
model_path, model_id, ques_jsons[i : i + chunk_size]
)
)
ans_jsons = []
for ans_handle in ans_handles:
ans_jsons.extend(ray.get(ans_handle))
with open(os.path.expanduser(answer_file), "w") as ans_file:
for line in ans_jsons:
ans_file.write(json.dumps(line) + "\n")
@ray.remote(num_gpus=1)
@torch.inference_mode()
def get_model_answers(model_path, model_id, question_jsons):
model_path = os.path.expanduser(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, torch_dtype=torch.float16
).cuda()
ans_jsons = []
for i, line in enumerate(tqdm(question_jsons)):
ques_json = json.loads(line)
idx = ques_json["question_id"]
qs = ques_json["text"]
conv = get_conversation_template(model_id)
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
torch.as_tensor(input_ids).cuda(),
do_sample=True,
temperature=0.7,
max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]) :]
outputs = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
ans_id = shortuuid.uuid()
ans_jsons.append(
{
"question_id": idx,
"text": outputs,
"answer_id": ans_id,
"model_id": model_id,
"metadata": {},
}
)
return ans_jsons
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, required=True)
parser.add_argument("--model-id", type=str, required=True)
parser.add_argument("--question-file", type=str, required=True)
parser.add_argument("--answer-file", type=str, default="answer.jsonl")
parser.add_argument("--num-gpus", type=int, default=1)
args = parser.parse_args()
ray.init()
run_eval(
args.model_path,
args.model_id,
args.question_file,
args.answer_file,
args.num_gpus,
)