Skip to content

Commit e581b33

Browse files
[Stablehlo]fix CumsumInputDtypeInt32Module_basic on stablehlo backend. (#2797)
Code used for testing.For the location of CumsumInputDtypeInt32Module in the repo you can see [here](https://github.com/llvm/torch-mlir/blob/311b6b0286bfa016346bc7fd8b441bbd50216060/projects/pt1/python/torch_mlir_e2e_test/test_suite/basic.py#L4148). ```python import torch import torch_mlir class CumsumInputDtypeInt32Module(torch.nn.Module): def __init__(self): super().__init__() def forward(self, val): return torch.ops.aten.cumsum(val, 1) module = torch_mlir.compile(CumsumInputDtypeInt32Module(), [torch.randn(2, 7, 4).to(torch.int32)], output_type="stablehlo") print(module.operation.get_asm()) ``` After fixing the bugs. ``` module attributes {torch.debug_module_name = "CumsumInputDtypeInt32Module"} { func.func @forward(%arg0: tensor<2x7x4xi32>) -> tensor<2x7x4xi64> { %0 = stablehlo.constant dense<0> : tensor<i64> %1 = stablehlo.convert %arg0 : (tensor<2x7x4xi32>) -> tensor<2x7x4xi64> %2 = "stablehlo.reduce_window"(%1, %0) ({ ^bb0(%arg1: tensor<i64>, %arg2: tensor<i64>): %3 = stablehlo.add %arg1, %arg2 : tensor<i64> stablehlo.return %3 : tensor<i64> }) {padding = dense<[[0, 0], [6, 0], [0, 0]]> : tensor<3x2xi64>, window_dilations = dense<1> : tensor<3xi64>, window_dimensions = dense<[1, 7, 1]> : tensor<3xi64>, window_strides = dense<1> : tensor<3xi64>} : (tensor<2x7x4xi64>, tensor<i64>) -> tensor<2x7x4xi64> return %2 : tensor<2x7x4xi64> } } ```
1 parent f6f8905 commit e581b33

File tree

1 file changed

+4
-2
lines changed

1 file changed

+4
-2
lines changed

lib/Conversion/TorchToStablehlo/Pooling.cpp

+4-2
Original file line numberDiff line numberDiff line change
@@ -569,11 +569,13 @@ LogicalResult ConvertAtenOp<AtenCumsumOp>::matchAndRewrite(
569569
ConversionPatternRewriter &rewriter) const {
570570
Value input = adaptor.getSelf();
571571
auto inputTy = input.getType().cast<RankedTensorType>();
572+
auto outTy =
573+
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
574+
input = hlo::promoteType(rewriter, op.getLoc(), input, outTy);
575+
inputTy = input.getType().cast<RankedTensorType>();
572576
auto inputElemTy = inputTy.getElementType();
573577
auto inputRank = inputTy.getRank();
574578
auto inputShape = inputTy.getShape();
575-
auto outTy =
576-
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
577579

578580
int64_t dim;
579581
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {

0 commit comments

Comments
 (0)