-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.m
72 lines (58 loc) · 2.1 KB
/
load_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [ data, regressionModel, domainBoundaries, predictionVector, theta, varEps ] = load_data(dataSource, nXGrid, nYGrid, offsetPercentage, fitRegressionModel)
%% LOAD_DATA Loads data from various sources
% Data files are loaded as a function of a variable called dataType
%
% Input: dataSource
%
% Output: data, regressionModel, domainBoundaries, predictionVector, theta, varEps
%%
switch dataSource
case 'satellite'
%% User Input
% Change as needed
load('./Data/satelliteData.mat')
% Values of parameters of covariance function [sigma^2, beta, nu]
theta = [5.57, 0.12, 0.5]; varEps = 0.01;
case 'simulated'
%% User Input
% Change as needed
load('./Data/simulatedData.mat')
% Values of parameters of covariance function [sigma^2, beta, nu]
theta = [8.13, 0.72, 0.5]; varEps = 0.1;
otherwise
error('Error. Specified datType is not a valid data set.');
end
disp('Loading data complete');
% Determine the boundaries of the domain spanded by the data.
xmin0 = min(x);
xmax0 = max(x);
ymin0 = min(y);
ymax0 = max(y);
domainBoundaries = [xmin0, xmax0, ymin0, ymax0];
% Make prediction grid
if nXGrid && nYGrid > 0 % If user defines a prediction grid
xPredictionVec = linspace(xmin0 + offsetPercentage, xmax0 - offsetPercentage, nXGrid);
yPredictionVec = linspace(ymin0 + offsetPercentage, ymax0 - offsetPercentage, nYGrid);
[xPredGridLocs, yPredGridLocs] = meshgrid(xPredictionVec, yPredictionVec);
else
xPredGridLocs = [];
yPredGridLocs = [];
end
% Find observation locations.
logicalInd = ~isnan(values);
% Declare predicition grid
predictionVector = [xPredGridLocs(:),yPredGridLocs(:)];
% Assign lon, lat and observations to data matrix.
data(:,1) = x(logicalInd);
data(:,2) = y(logicalInd);
% Detrend data.
if fitRegressionModel
data(:,4) = values(logicalInd);
regressionModel = fitlm(data(:,1:2),data(:,4), 'linear');
residuals = table2array(regressionModel.Residuals(:, 1));
data(:,3) = residuals;
else
regressionModel = nan;
data(:,3) = values(logicalInd);
end
end