-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions.py
224 lines (188 loc) · 6.84 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import scipy as scp
import matplotlib.pyplot as plt
# creates qubit Hamiltonian
def qubit(Eup, Edown, Tau):
return np.array([[Eup, Tau],[np.conj(Tau), Edown]])
# hard coded inverse of 2x2 matrix (faster)
def inverse_2x2(m):
if (m[0][0]*m[1][1] != m[0][1]*m[1][0]):
return 1/(m[0][0]*m[1][1]- m[0][1]*m[1][0]) * \
np.array([[m[1][1], -m[0][1]], [-m[1][0], m[0][0]]] )
else:
print ("Error: Singular matrix. E: ", E)
# GE= inverse(E-H)
# subtract (i*10^-10) to avoid singularity
# pinv => pseudo-inverse. Uses least squares regression to solve
# inv(A) * I = A for any Hamiltonian greater than 2x2
def GE(qubit):
def GEhelp(E):
n = len(qubit)
Greens = ( (E-(10**(-7)*1j))*np.eye(n) - qubit)
if len(Greens) == 2:
return inverse_2x2(Greens)
else:
return np.linalg.pinv(Greens)
return GEhelp
# combines 2 or 3 system Hamiltonians, with energy dependences
# specified by U, which should be of same size as the combined
# Hamiltonian
def couple(Hlist, U):
if (len(Hlist) ==2):
return (np.kron(Hlist[0], np.eye(len(Hlist[1])) ) + np.kron(np.eye(len(Hlist[0])), Hlist[1]) + U)
elif (len(Hlist) == 3):
return (np.kron(Hlist[0], np.kron(np.eye(len(Hlist[1])), np.eye(len(Hlist[2])))) + \
np.kron(np.eye(len(Hlist[0])), np.kron(Hlist[1], np.eye(len(Hlist[2])))) + \
np.kron(np.kron(np.eye(len(Hlist[0])), np.eye(len(Hlist[1]))), Hlist[2]) + U)
# Returns the fourrier transform of each element of G(E), evaluated over
# interval specified by t.
def fourier(GE, E, dE, t):
transforms = np.zeros(shape=(len(t), len(GE[0]), len(GE[0][0])))
func = np.zeros(len(GE))
for i in range(len(GE[0])):
for j in range(len(GE[0][0])):
func = np.array(list(map(getByIndex(i,j), GE)))
transform = fourier_transform(func, E, dE)
transforms = insert(transforms, np.array(list(map(transform, t))), i, j)
return transforms
# fourier transform takes an array of GE evaluated over range E
# returns function of t, can be evaluated at later time
def fourier_transform(func, E, dE):
def ft_help(t):
return dE * np.sum(np.exp(-1j*E*t) * np.transpose(func))
return ft_help
def normalize(x):
#norm = np.sqrt(sum((i**2) for i in x))
norm = np.linalg.norm(x)
return x/norm
# returns normalized density matrix, given time evolution of Green's
# function
def density_matrix(n):
# get first column of n
psi = n[0]
norm = np.linalg.norm(psi)
psi = psi/norm
return np.multiply(np.transpose(np.conj(psi)), psi.reshape(len(psi),1))
# hard coded partial trace operation. Need help here for taking the partial
# trace of qubits tensored with channel -> confirmed to function with GE's and
# fourier transformes at time t = 0
# x denotes qubit to trace out (0 = Left, 1 = Right)
def ptrace2q(x):
def ptraceHelp(n):
if (x == 1 ):
return np.array([[n[0][0]+n[1][1], n[0][2]+n[1][3]], \
[n[2][0]+n[3][1], n[2][2]+n[3][3]]])
elif (x == 0 ):
return np.array([[n[0][0]+n[2][2],n[0][1]+n[2][3]],\
[n[1][0]+n[3][2],n[1][1]+n[3][3]]])
return ptraceHelp
#takes partial trace of matrix p
# traceout = subsystems to trace out
# dimensions of tensor space
# p = matrix
# traceout = index of syb-system to traceout
# dims = array of dimensions
# traceout the first of 2 qubits coupled to a length five channel:
# ptrace(rho, 1, [2,5,2])
# This is converted from matlab code:
# https://github.com/CoryGroup/quantum-utils-matlab/blob/master/src/ptrace.m
def ptrace(p, traceout, dims):
"""
NOTE: ptrace(2) of q1 X (channel X q2) ==
ptrace(2) of ptrace(2) of (q1 X q2) X channel
"""
dims1 = [i+1 for i, x in enumerate(dims) if x ==1]
traceout = np.setdiff1d(traceout, dims1)
dims = np.array([x for x in dims if x !=1])
n = len(dims)
rdims = dims[::-1]
keep = [x+1 for x in range(n)]
keep = np.setdiff1d(keep, traceout)
dimtrace = np.prod([dims[x-1] for x in traceout])
dimkeep = len(p)/dimtrace
"""
# TODO: incorporate this check if p is a state vectors
# and not a density matrix. For now assuming p is
# always the result of a tensor product, we should
# have no problems. I, on the other hand, have a lot of problems
if (len(p) == 1 or len(p[0]) ==1):
perm = n+1 -(np.append((keep[::-1]),traceout))
# print
x = np.reshape(np.transpose(np.reshape(p,rdims),perm), np.append[dimkeep,dimtrace])
x = x*np.transpose(x)
print (x)
else:
"""
perm = n + 1 - np.append(keep[::-1], np.append(keep[::-1]-n, np.append(traceout,traceout-n)))
#t2 = np.transpose(np.transpose(t1, perm-1), [0,1,3,2])
reshapedims = np.append(dimkeep,np.append(dimkeep,dimtrace**2))
temp = np.reshape(np.transpose(np.reshape(np.transpose(p),np.append(rdims,rdims)), perm-1), reshapedims)
# create this array: [1:(dimtrace+1):dimtrace**2]
arr= np.arange(1, (dimtrace**2)+1, dimtrace+1)
x = np.sum(temp[:,:,arr-1],2);
return x
# creates a channel following the specifications of e:
# e == 0, energies = 0, and coupling is unit
# e == 1, energies = 1, and coupling is random
# e == anyhting else, energies are uniformly, randomly distributed
# and coupling constants are unit
def channel(length, e, energyBound):
if e ==0:
energies = np.zeros(length)
couplings = 0.25*np.ones(length-1)
elif e == 1:
energies = np.ones(length)
#couplings = [1,2,3]
couplings = np.random.uniform(low=0, high=(energyBound), size=length-1)
else:
energies= np.random.uniform(low=(-energyBound), high=(energyBound), size=length)
couplings = 0.25* np.ones(length-1)
#couplings = np.random.uniform(low=0, high=(energyBound), size = length-1)
matrix = np.eye(length) * np.transpose(energies)
matrix = matrix + 0j
for i in range(0, length-1):
matrix[i][i+1] = couplings[i]
matrix[i+1][i] = couplings[i]
#print ("\n channel: \n", matrix)
return matrix
# obtain element at position i,j, from "page" n of a 3D matrix:
# ie: for i in transforms: getByIndex(1,1)(i)
# would return the elements at 1,1 of each "page" in transforms
def getByIndex(i, j):
def biHelp(n):
return n[i][j]
return biHelp
# returns ith column of "page" n of a 3D matrix. See above.
def getByColumn(i):
def bcHelp(n):
a = np.zeros(len(n), dtype = np.complex)
for k in range(len(n)):
a[k] = n[k][i]
return a
return bcHelp
# TODO: find out how to do this using mapping
#def insertByIndex()
# inserts array a in 3D array at position i,j
# ie: a[k] is now the element at position i,j of the kth page of n
def insert(n, a, i, j):
n = n+0j
for k in range(len(a)):
n[k][i][j] = a[k]
return n
# average difference between two arrays, element-wise
def avg_diff(a, b):
return (np.mean(np.abs(np.subtract(a,b))))
# concurrence and von neuman entropy --> not sure if very usefull
# measures of entanglement dynamics as of right now
def concurence(a):
eigvals = np.sort(np.linalg.eigvals(a))
first = eigvals[0]
tempsum = 0
for i in range(1, len(eigvals)-1):
tempsum = tempsum + eigvals[i]
if (first- tempsum >0):
return first-tempsum
else:
return 0
def entropy(rho):
return -np.trace(rho * np.log2(rho))