-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path142.py
89 lines (70 loc) · 3.18 KB
/
142.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class Solution(object):
"""
原理:首先初始化快指针 fast = head.next.next 和 slow = head.next,
此时快指针走的路长为2, m慢指针走的路长为1,之后令快指针每次走两步,
慢指针每次走一步,这样快指针走的路长始终是慢指针走的路长的两倍,
若不存在环,直接返回None,
若存在环,则 fast 与 slow 肯定会在若干步之后相遇;
性质1:
设从head需要走 a 步到达环的入口,如果环存在的话,
再走 b 步可以再次到达该入口(即环的长度为b),
如果存在环的话,上述描述的 快指针 fast 和
慢指针slow 必然会相遇,且此时slow走的路长
小于 a + b(可以自行证明),设其为 a + x,
当快慢指针相遇时,快指针已经至少走完一圈环了,
不妨设相遇时走了完整的m圈(m >= 1),有:
快指针走的路长为 a + mb + x
慢指针走的路长为 a + x
由于快指针fast 走的路长始终是慢指针的 2倍,所以:
a + mb + x = 2(a + x)
化简可得:
a = mb - x ------------- (*)
当快指针与慢指针相遇时,由于 <性质1> 的存在,
可以在链表的开头初始化一个新的指针,
称其为 detection, 此时 detection 距离环的入口的距离为 a,
此时令 detection 和 fast 每次走一步,
会发现当各自走了 a 步之后,两个指针同时到达了环的入口,理由分别如下:
detection不用说了,走了a步肯定到刚好到入口
fast已经走过的距离为 a + mb + x,当再走 a 步之后,
fast走过的总距离为 2a + mb + x,带入性质1的(*)式可得:
2a + mb + x = a + 2mb,会发现,fast此时刚好走完了
整整 2m 圈环,正好处于入口的位置。
基于此,我们可以进行循环,直到 detection 和
fast 指向同一个对象,此时指向的对象恰好为环的入口。
"""
def detectCycle(self, head):
"""
:type head: ListNode
:rtype: ListNode
"""
# 首先初始化快指针和慢指针,确保快指针走的路的长度是慢指针长度的2倍
if head and head.next:
fast = head.next.next
slow = head.next
else:
return None # 说明无环
# 进行循环,首先让快指针和慢指针第一次相遇
while fast:
if fast != slow:
# 快指针走两步
if fast.next:
fast = fast.next.next
else:
return None # 说明无环
# 慢指针走一步
slow = slow.next
else:
detection = head
while detection != slow: # 此时由于slow和fast是一样的,用哪个都行
slow = slow.next
detection = detection.next
return detection
'''
题:
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。
注: 不允许修改给出的链表
解:
快慢指针
'''