|
| 1 | +import logging |
| 2 | + |
| 3 | +from clearml import Task |
| 4 | +from clearml.automation import ( |
| 5 | + DiscreteParameterRange, |
| 6 | + HyperParameterOptimizer, |
| 7 | + RandomSearch, |
| 8 | + UniformIntegerParameterRange, |
| 9 | + DiscreteParameterRange, |
| 10 | + GridSearch, |
| 11 | + Objective |
| 12 | +) |
| 13 | + |
| 14 | + |
| 15 | +def job_complete_callback( |
| 16 | + job_id, # type: str |
| 17 | + objective_value, # type: float |
| 18 | + objective_iteration, # type: int |
| 19 | + job_parameters, # type: dict |
| 20 | + top_performance_job_id, # type: str |
| 21 | +): |
| 22 | + print( |
| 23 | + "Job completed!", job_id, objective_value, objective_iteration, job_parameters |
| 24 | + ) |
| 25 | + if job_id == top_performance_job_id: |
| 26 | + print( |
| 27 | + "WOOT WOOT we broke the record! Objective reached {}".format( |
| 28 | + objective_value |
| 29 | + ) |
| 30 | + ) |
| 31 | + |
| 32 | + |
| 33 | +# Connecting ClearML with the current process, |
| 34 | +# from here on everything is logged automatically |
| 35 | +# task = Task.init( |
| 36 | +# project_name="Hyper-Parameter Optimization", |
| 37 | +# task_name="Automatic Hyper-Parameter Optimization", |
| 38 | +# task_type=Task.TaskTypes.optimizer, |
| 39 | +# reuse_last_task_id=False, |
| 40 | +# ) |
| 41 | + |
| 42 | +# experiment template to optimize in the hyper-parameter optimization |
| 43 | +# args = { |
| 44 | +# "template_task_id": None, |
| 45 | +# "run_as_service": False, |
| 46 | +# } |
| 47 | +# args = task.connect(args) |
| 48 | +# Set default queue name for the Training tasks themselves. |
| 49 | +# later can be overridden in the UI |
| 50 | +from clearml import PipelineController, Logger |
| 51 | + |
| 52 | +def initialization_step(seed=10): |
| 53 | + import numpy as np |
| 54 | + import pandas as pd |
| 55 | + |
| 56 | + x = np.random.randn(1000) |
| 57 | + y = x ** 2 |
| 58 | + return pd.DataFrame({"x": x, "y": y}) |
| 59 | + |
| 60 | + |
| 61 | +def loss_function(data, theta): |
| 62 | + import numpy as np |
| 63 | + |
| 64 | + return np.mean(np.abs(theta * data["x"] ** 2 - data["y"])) |
| 65 | + |
| 66 | + |
| 67 | +def optimization_step(data, maxiter, popsize): |
| 68 | + from scipy.optimize import differential_evolution, Bounds |
| 69 | + import numpy as np |
| 70 | + |
| 71 | + def loss_function(data, theta): |
| 72 | + import numpy as np |
| 73 | + |
| 74 | + return np.mean(np.abs(theta * data["x"] ** 2 - data["y"])) |
| 75 | + |
| 76 | + def loss(theta): |
| 77 | + return loss_function(data, theta) |
| 78 | + |
| 79 | + optim_results = differential_evolution( |
| 80 | + loss, Bounds([-1], [1]), maxiter=maxiter, popsize=popsize |
| 81 | + ) |
| 82 | + a = optim_results.x |
| 83 | + return a |
| 84 | + |
| 85 | + |
| 86 | +def evaluation_step(data, a): |
| 87 | + from clearml import PipelineController, Logger |
| 88 | + def loss_function(data, theta): |
| 89 | + import numpy as np |
| 90 | + |
| 91 | + return np.mean(np.abs(theta * data["x"] ** 2 - data["y"])) |
| 92 | + |
| 93 | + loss_value = loss_function(data, a) |
| 94 | + print(f"loss={loss_value}") |
| 95 | + Logger.current_logger().report_scalar(title="loss", series="loss", value=loss_value, iteration=1) |
| 96 | + return loss_value |
| 97 | + |
| 98 | + |
| 99 | +def setup_pipeline(maxiter, popsize): |
| 100 | + pipe = PipelineController( |
| 101 | + name="Hyperparam kata controller", project="Hyperparamater kata", version="0.0.1" |
| 102 | + ) |
| 103 | + |
| 104 | + |
| 105 | + pipe.add_function_step( |
| 106 | + "initialization", |
| 107 | + initialization_step, |
| 108 | + function_kwargs=dict(seed=10), |
| 109 | + function_return=["data"], |
| 110 | + cache_executed_step=True, |
| 111 | + ) |
| 112 | + |
| 113 | + pipe.add_function_step( |
| 114 | + "optimization", |
| 115 | + optimization_step, |
| 116 | + function_kwargs=dict(data="${initialization.data}", maxiter=maxiter, popsize=popsize), |
| 117 | + function_return=["a"], |
| 118 | + cache_executed_step=True, |
| 119 | + ) |
| 120 | + |
| 121 | + pipe.add_function_step( |
| 122 | + "evaluation", |
| 123 | + evaluation_step, |
| 124 | + function_kwargs=dict(data="${initialization.data}", a="${optimization.a}"), |
| 125 | + function_return=["loss_value"], |
| 126 | + monitor_metrics=[("optimization", "loss_value")], |
| 127 | + cache_executed_step=True, |
| 128 | + ) |
| 129 | + return pipe |
| 130 | + |
| 131 | +import itertools |
| 132 | + |
| 133 | +for (maxiter, popsize) in itertools.product([10, 100], [10, 100]): |
| 134 | + print(f"running pipe with (maxiter, popsize)={(maxiter, popsize)}") |
| 135 | + pipe = setup_pipeline(maxiter, popsize) |
| 136 | + pipe.set_default_execution_queue("default") |
| 137 | + pipe.start_locally(run_pipeline_steps_locally=True) |
| 138 | + |
| 139 | +import ipdb; ipdb.set_trace() |
| 140 | + |
| 141 | +#pipe.set_default_execution_queue("default") |
| 142 | +#pipe.start_locally(run_pipeline_steps_locally=True) |
| 143 | + |
0 commit comments