|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 | 5 | "execution_count": 1,
|
6 |
| - "metadata": {}, |
7 |
| - "outputs": [ |
8 |
| - { |
9 |
| - "name": "stdout", |
10 |
| - "output_type": "stream", |
11 |
| - "text": [ |
12 |
| - "/home/kuba/Projects/notebooks/examples-counterexamples/src\n" |
13 |
| - ] |
14 |
| - } |
15 |
| - ], |
16 |
| - "source": [ |
17 |
| - "cd ../../src" |
18 |
| - ] |
19 |
| - }, |
20 |
| - { |
21 |
| - "cell_type": "code", |
22 |
| - "execution_count": 2, |
23 |
| - "metadata": {}, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
24 | 9 | "outputs": [],
|
25 | 10 | "source": [
|
26 | 11 | "from __future__ import print_function\n",
|
|
34 | 19 | "%matplotlib inline\n",
|
35 | 20 | "import matplotlib.pyplot as plt\n",
|
36 | 21 | "\n",
|
37 |
| - "from fetch_mnist import preprocessed_mnist" |
| 22 | + "from src.fetch_mnist import preprocessed_mnist" |
38 | 23 | ]
|
39 | 24 | },
|
40 | 25 | {
|
41 | 26 | "cell_type": "code",
|
42 |
| - "execution_count": 3, |
| 27 | + "execution_count": 2, |
43 | 28 | "metadata": {},
|
44 | 29 | "outputs": [
|
45 | 30 | {
|
|
78 | 63 | },
|
79 | 64 | {
|
80 | 65 | "cell_type": "code",
|
81 |
| - "execution_count": 4, |
82 |
| - "metadata": {}, |
| 66 | + "execution_count": 3, |
| 67 | + "metadata": { |
| 68 | + "collapsed": true |
| 69 | + }, |
83 | 70 | "outputs": [],
|
84 | 71 | "source": [
|
85 | 72 | "data = sym.Variable('data')\n",
|
|
91 | 78 | },
|
92 | 79 | {
|
93 | 80 | "cell_type": "code",
|
94 |
| - "execution_count": 12, |
| 81 | + "execution_count": 4, |
95 | 82 | "metadata": {
|
96 | 83 | "collapsed": true
|
97 | 84 | },
|
|
112 | 99 | " message = 'Iter[{}] Batch[{}] Train-{}={}'.format(*message_args)\n",
|
113 | 100 | " if print_log:\n",
|
114 | 101 | " print(message)\n",
|
115 |
| - " lsb.append(message, message_args)\n", |
| 102 | + " lst.append((message, message_args))\n", |
116 | 103 | " return _callback"
|
117 | 104 | ]
|
118 | 105 | },
|
119 | 106 | {
|
120 | 107 | "cell_type": "code",
|
121 |
| - "execution_count": 7, |
| 108 | + "execution_count": 5, |
122 | 109 | "metadata": {
|
123 | 110 | "scrolled": false
|
124 | 111 | },
|
|
127 | 114 | "name": "stdout",
|
128 | 115 | "output_type": "stream",
|
129 | 116 | "text": [
|
130 |
| - "CPU times: user 24.4 s, sys: 844 ms, total: 25.3 s\n", |
131 |
| - "Wall time: 12.2 s\n" |
| 117 | + "CPU times: user 25.5 s, sys: 1.29 s, total: 26.8 s\n", |
| 118 | + "Wall time: 13 s\n" |
132 | 119 | ]
|
133 | 120 | }
|
134 | 121 | ],
|
|
143 | 130 | },
|
144 | 131 | {
|
145 | 132 | "cell_type": "code",
|
146 |
| - "execution_count": 8, |
147 |
| - "metadata": {}, |
| 133 | + "execution_count": 6, |
| 134 | + "metadata": { |
| 135 | + "collapsed": true |
| 136 | + }, |
148 | 137 | "outputs": [],
|
149 | 138 | "source": [
|
150 | 139 | "y_test_pred_proba = nn.predict(test_iter)\n",
|
|
153 | 142 | },
|
154 | 143 | {
|
155 | 144 | "cell_type": "code",
|
156 |
| - "execution_count": 9, |
| 145 | + "execution_count": 7, |
157 | 146 | "metadata": {},
|
158 | 147 | "outputs": [
|
159 | 148 | {
|
160 | 149 | "data": {
|
161 | 150 | "text/plain": [
|
162 |
| - "0.89400000000000002" |
| 151 | + "0.89242857142857146" |
163 | 152 | ]
|
164 | 153 | },
|
165 |
| - "execution_count": 9, |
| 154 | + "execution_count": 7, |
166 | 155 | "metadata": {},
|
167 | 156 | "output_type": "execute_result"
|
168 | 157 | }
|
|
175 | 164 | },
|
176 | 165 | {
|
177 | 166 | "cell_type": "code",
|
178 |
| - "execution_count": 14, |
179 |
| - "metadata": {}, |
| 167 | + "execution_count": 8, |
| 168 | + "metadata": { |
| 169 | + "collapsed": true |
| 170 | + }, |
180 | 171 | "outputs": [],
|
181 | 172 | "source": [
|
182 | 173 | "accs = [msg[1][3] for msg in log_list]"
|
|
191 | 182 | },
|
192 | 183 | {
|
193 | 184 | "cell_type": "code",
|
194 |
| - "execution_count": 19, |
| 185 | + "execution_count": 9, |
195 | 186 | "metadata": {},
|
196 | 187 | "outputs": [
|
197 | 188 | {
|
198 | 189 | "data": {
|
199 | 190 | "text/plain": [
|
200 |
| - "[<matplotlib.lines.Line2D at 0x7f0790ef81d0>]" |
| 191 | + "[<matplotlib.lines.Line2D at 0x7fca28066c88>]" |
201 | 192 | ]
|
202 | 193 | },
|
203 |
| - "execution_count": 19, |
| 194 | + "execution_count": 9, |
204 | 195 | "metadata": {},
|
205 | 196 | "output_type": "execute_result"
|
206 | 197 | },
|
207 | 198 | {
|
208 | 199 | "data": {
|
209 | 200 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHVlJREFUeJzt3Xlw3PWZ5/H3oz4l67Jl+ZJ8YWxsB2wwhkAgEEJIgCSQ\nmU12yTEJSWYYNpNsMpWtyUElVanZqdrdpDZJzZKwDAPJJExIBpiEJCSBnMCkAB/hML4QNrZly5Zk\nWdbRLfX17B/dlltCLQuQ6f41n1eVy/odUj86+qOvnu+3fz9zd0REpLrUlLsAERGZeQp3EZEqpHAX\nEalCCncRkSqkcBcRqUIKdxGRKqRwFxGpQgp3EZEqpHAXEalC4XI98Ny5c33ZsmXlengRkUDasmVL\nr7u3nuq8soX7smXL2Lx5c7keXkQkkMxs33TOU1tGRKQKKdxFRKqQwl1EpAop3EVEqpDCXUSkCinc\nRUSqkMJdRKQKlW2du4hIObg7ZjZuXzbnHB0epak2QiwcGtufSGXY0zNMYzxCS32UWbF8ZA6MpNl1\neJD6WJiW+ihz6qKEaowXeobZdvA4ddEQC5tqmd8UY05dlO1dAzyxpw8zaG2IsXZhIyvnN5zWz1Ph\nLiLTksnmGBrNUB8LEw6d/KO/bzjFzq4BmuoiLGiM01Ifw9159uBxNr14jKbaCPMbY6xra6Y+HmbT\ni308vucotZEQs2dFOXNePe3NtWzed4wn9hwlGq5h9qwos+ui1MfC7Do8yFMH+omGa5jfGGdBY5x5\njTH29Azx5IvHSGdytNRHaZ9dx8p59RwZGOGR53vpT6SYXRdlYVOcFfPqGRrN8OjzPXT1j9BYG2F+\nY5w1CxswjN/t6qZvOAVAQzzM0pY6YuEQz3T2k86evM90y6wozXUR9vQOM/H207WREMl0dlpfy//6\nlhV87urVr/6bMgUr1w2yN27c6HqFqrzeuTsj6RzxSM240eTQaIbnDh5nzqwoC5riNMQjAHQPjvDY\n873Ux8IsaIqzekEj0XANOw8P8ItnDxMN19BaH2PD0tmsaJ3F1v3HuHfLQdLZHI3xCBuWNvOWs+bx\nzIF+frj5AMeTaWbFwqxd2Mg73jCfPT3DfO/xfRzqT1IXDbOkpY5Lz5xLz+Ao3398H92DowAsbIpz\nxep5ANy3pZPRTG6s9rbmWuKRGl7oGX7J59sQDzM4kin59aiLhnBnXEiGaow1CxvI5eDIwAhHCyEc\nDdVw7pJmGmJheodT7Ds6TH8iTSRkbFw6h0XNtfQnUhzsT7Knd5hoqIaLV7Rw5rx6BpJpOo8l2dE1\nwEg6yxWr53He4maGRjN0D46y72iCwZE0Fyyfw/r2ZhKpLD2Do+zvG6ZnMMXZbY2sa29iJJ3j6NAo\nvUMpBkbSnDW/gfOWzGY0k+Xw8REOD4zQMzjKmfPquXhFC7FQiJ6hEWbFwixsqn1FPzNmtsXdN57y\nPIW7SGkH+5OMprM0xCPMrY9iZrg7W/Yd4+hwingkxNqFjbQ2xEimstyzaT+H+pPUxyKsnF/P5ata\nOdif5B9/28HzRwZpqo3QPruOi1e0kExluOuPL7KnZ5hYuIa22bW8cXkL8UgN927uZHA0H4JmsK6t\nibbZtfx6ezep7MkgjUdqWDKnjt1HhjBj3GiyuS5CfyJNfSxMYzzMsUSaZDo7dt7sugiL59QxkEzz\n4tHE2Pstaopz3pLZDKcy7Owa5PDACACXr2rlzSvnMjyaZUfXAI8+30M66/z5hjauPWchiVSG/X0J\nnu48Tn8ixbXnLOSqNfNJprN0Hkvyp/3H2N+X4M0rW7lyzTzcoWdwlN1HBtnfl2D94mbOW9xMOFRD\nMpXlWCIfmEvm1FEXPdlkGM3kg3ZufYx45GQLxd3pHUpRFw2NtU9OyObyX5hQzfh2TBAp3KVquDuj\nmRyx8PjR7YG+BJv39VEbyfc3z2lrAuCh7Yf5w+5eZkVDLGiKc805C2mtj/GjzQf46dOHiIRqaKqL\ncPmqVta1N3H34/u5b2sn4Rpjbn2MS1fO5U0r5nLf1k4e3n5k7PFWL2jgP21o59c7jvDE3r6x/aEa\n400rWtjRNUjv0CjxSA0j6XwAR8M1pLM56iIhLjqjhcGRDB09Q2MtgPXtTVy1dn5+f/cQT+7tI5HO\ncu05C7l+/SIS6SwvdA/xWEcve3uHefe6hbxv42LcofNYgif29rHr8CBXrG7lfecvpjYaouv4CP/R\n0cvmF/vYuGwOf3ZeG7NiYbK5/C+l3+/qZkVrPe9ct3AsHLuOJ/nNjm7m1kd525r5Y20Xd+eFniGi\noRBLWurGfV9GM1nSWac+pu7ua0nhLmXXdTxJpvDkb66LYGaMpLPct7WTwZEMjfEI69qbeMOiRnYd\nGeTW371AV3+S2miIc9qa+OBFS9nTM8RXfrqdju4hAFa0zuLGS5YzNJLhG7/e/ZJ2QEM8zM7DgzTE\n82GWSOVHqrProvQNp1i9oIFZsTBd/UkOHc+PSCMh493rFtEQD3Owf4THOnoYSedoiIf52CXLWTa3\njt7BFD9+6iDPHRpgbn2UT711JRuXzWZ4NMvvd3Xz4LNdLGqu5W+vWsUFy+aQzubYsu8YDz13hPpY\niBsvWc6cWVEAcjln15FBsjnnDYsax/3CymRzJAt/KYhMRuEuMyqZyvLHF3pJZ526aIgLls0hFq7h\n3q2d3PnYXgAaayNcdEYL5y1p5gdP7OeholHvynn1XLF6Hj9/pouD/clxH7u1IUbv0Cj10TDntDcx\nNJph28HjOPn2wdKWOt67oZ10NscfdvfwdOdxAN7xhvl8+spVAOw8PMBPnz5E71CKj16yjOvWLyIc\nquFAX4J7t3Syo2uAD7xxCZevah1rrTx78DhPHejnbWvms6j5ZP9zeDTDln3HWL+4mabakyHr7uzt\nHWZ+Y/wlf/aLvFYU7jKlju4hth08Tn0szPzGOGctaKB7cISv/WoXv93ZTSwSYm59jGvOXsCCxjhf\n//VuugojXYBZ0RBts2vZfWSIde1NLGiM0z04yjOd/eQ8P3H20UuWs3h2LX3DKX6zs5sn9/Zxdlsj\nX7x2DecububoUIrH9xzl97t7OGPuLD5+6XKa6/Kj24P9SX646QANsTB/cfHSsfaBu7N1fz+pTI6L\nV7SU5WsnUk4Kd6FvOMUdj+6ho3uIumiIObNiLJ5Ty5/29/PTZw6Nm3yLhmvA85N3+VGv8UL3ME++\nmO8tn9PWxGffvorWhhhHh1L8Ytthnj3Yz4cvWsZ7z2+npjBRdXRolD/t7+eCZXNoqhvfWhgazVAX\nCY2dKyIv33TDXX9bBsze3mGOJVLMiubX4sYjIbbuP8ZXHniOfX0JwjVGc12UtuZatuw7xnAqw8p5\n9STTWY4OpUikstRGQvz1ZSv48w1tjKSz7O9L8NT+fjI5568uO4O2ohbFof4kL/YOc9EZLeNC+bJV\nk98IpqU+xtvWzp/0mCbeRF47erZVIHdn04vHyGRzNNZGWNFaTzhkfP3h3Xz7Dy+MjbijoRrOWtDA\ntkPHWdAY57r1i8jknKNDoxzoS3L5Wa185sqVY6+EO7FULB6pGTdht669mXetWzRpLYuaa8f1o0Uk\nGBTuFSCXc9K5HJGaGroGRvjC/c/yyO6eseOhGmN2XZTeoVH+88Z2rjl7IYOFScct+47x8UuW85mr\nVp1yZGxmtDbETvenIyIVQOFeRj/adID/8fPtDBS9Ys8s/zLmL79rLWsWNnIskWJH1wDPHxniXesX\njhthX7d+8tG2iIjC/TXQeSzBD57cT38iTTqbY2nLrMK+A7xx+RwuOqOFaLiGVCaHu/O+jYtZPOfk\nC0auPWdhGasXkSBSuJ9mW/b1cdO/bKE/maa5Nv9Cnt6hTgD+6s3L+dzVq8ddhElEZCYo3GfQz5/p\n4p8e3cPB/iQDyTRzZkU5OpRiUXOcH918MSta64H8ksCBZFoTlSJy2ijcZ8j3Ht/Hl3+yjZXz6nnr\nWfNoqotwtLAy5b+//SxmF156DvklgVoWKCKnkxLmFXh4+xHueXI/Ow8P0jecoqk2wuGBEa5cPY9b\nP7hh3JXqRETKQeH+Mn3/8X186SfbaJ9dy/lLZ9PaEGMgmWZhU5xPXbmSiPrnIlIBFO5TcHe2dw3w\n+109vNA9RO9wikd292iELiIVT+FeQjqb46N3beKxjl7g5OVkb3zTMm555xqN0EWkok0r3M3sauCb\nQAi4w93/54TjTcD3gSWFj/k1d79rhmt9Tf3vX+7ksY5e/u7qs3jv+e3Ma4iXuyQRkWk7ZbibWQi4\nFbgK6AQ2mdkD7r696LS/Aba7+7vNrBXYZWZ3u3vqtFR9mnQdT7L/aIJthwb4p0f38uGLl/KJt5xZ\n7rJERF626YzcLwQ63H0PgJndA1wPFIe7Aw2Wv6VMPdAHlL4LboW56z/2cs+TB9h1ZHBs37mLm7nl\nnWvKWJWIyCs3nXBvAw4UbXcCb5xwzv8FHgAOAQ3Af3H33IRzMLObgJsAlixZ8krqnXEPPH2Ir/x0\nO+ctaeaWa9ewZmEjTbURzlrQkL/GuYhIAM3UhOo7gKeAtwIrgIfN7FF3Hyg+yd1vB26H/M06Zuix\nX7H9RxN88f5n2bCkmR/+9cWaJBWRqjGdNDsILC7abi/sK/ZR4H7P6wD2AqtnpsSZl87mePDZLj72\n3U3UGHzzhvMU7CJSVaYzct8ErDSz5eRD/QbgAxPO2Q9cCTxqZvOBs4A9M1noTOgeHOEHTxzgX5/c\nx5GBUdqaa/nHD2wYdwVGEZFqcMpwd/eMmX0S+BX5pZB3uvtzZnZz4fhtwN8D3zGzZwEDPufuvaex\n7peto3uQ99z6R4ZGM1y2qpV/eM9Srlg9j5Du5ykiVWhaPXd3fxB4cMK+24rePgS8fWZLmzmJVIZP\n3L2VWLiGf//EZWO3nRMRqVavi1eofunHz/F89xD/8rELFewi8rpQ9bOIP9p8gPu2dvKpt67kzStb\ny12OiMhroqrDfefhAb78k228aUULn75yZbnLERF5zVRtuB8+PsIn7t5KfSzCN244VxOnIvK6UpU9\n98ee7+XT9/yJZDrLnTdeoIt+icjrTtWF+/ZDA3zkric5Y+4svv2hDZw5TxOoIvL6U3Xh/v8eeYF4\nuIZ/u/limuuip34HEZEqVFU99wN9CX72TBfvv3CJgl1EXteqKtz/+bG9GPCxS5eXuxQRkbKqmnA/\nnkjzw00HuO7cRSxqri13OSIiZVU14d7RM0gyneXd6xaVuxQRkbKrmnBPpLIA1Merbo5YRORlq7pw\nr42EylyJiEj5VU24JwvhXhdVuIuIVE24J8bCXW0ZEZEqCvcMALUauYuIVE+4J9VzFxEZUzXhnkhn\nCdcY0XDVfEoiIq9Y1SRhMpVVS0ZEpKBqwj2RymiljIhIQRWFe1YrZURECqom3EfSWU2miogUVE24\n50fuCncREaiycNeEqohIXtWEe1IjdxGRMVUT7ol0RhOqIiIFVRPuWucuInJS1YR7IpWlTqtlRESA\nKgl3dyeZVs9dROSEqgj3kXQOd4gr3EVEgCoJ9xOX+1VbRkQkr0rCXTfqEBEpVhXhnkwXruWutoyI\nCFAl4Z7Q/VNFRMapknDXLfZERIpVRbgn1XMXERmnOsI9rbaMiEixqgj3hG6OLSIyzrTC3cyuNrNd\nZtZhZp8vcc5bzOwpM3vOzP4ws2VOLakJVRGRcU7ZpDazEHArcBXQCWwyswfcfXvROc3At4Cr3X2/\nmc07XQVPRuvcRUTGm87I/UKgw933uHsKuAe4fsI5HwDud/f9AO7ePbNlTi2ZymAG8UhVdJlERF61\n6aRhG3CgaLuzsK/YKmC2mf3ezLaY2Ycn+0BmdpOZbTazzT09Pa+s4kkkUvn7p5rZjH1MEZEgm6mh\nbhg4H3gn8A7gS2a2auJJ7n67u290942tra0z9NCQ0BUhRUTGmU6T+iCwuGi7vbCvWCdw1N2HgWEz\newRYD+yekSpPIZnKEtdKGRGRMdMZuW8CVprZcjOLAjcAD0w45yfApWYWNrM64I3AjpkttbREKqOR\nu4hIkVOO3N09Y2afBH4FhIA73f05M7u5cPw2d99hZr8EngFywB3uvu10Fl4skcpSq5UyIiJjppWI\n7v4g8OCEfbdN2P4q8NWZK236krrFnojIOFWxdjCR0oSqiEixqgj3ZDqrK0KKiBSpinDXhKqIyHhV\nEu5ZXXpARKRIVYR7MqW2jIhIscCHezqbI5NzrZYRESkS+HAfu5a7Ru4iImMCH+66xZ6IyEsFPtxP\n3Bxbq2VERE6qgnBXW0ZEZKLAh/uJm2Pr/qkiIicFPtyHRvJtmfq4eu4iIicEPtwHRtIANCrcRUTG\nBD7cBwsj94Z4pMyViIhUjioKd43cRUROqIJwTxOuMU2oiogUCXy4D4ykaYiHMbNylyIiUjECH+6D\nIxn120VEJqiScFe/XUSkWBWEe1rhLiIyQRWEu9oyIiITVUW4NyrcRUTGCXy4DyTVlhERmSjQ4Z7L\nOUOpjC49ICIyQaDDfSiVwV2XHhARmSjQ4a5LD4iITC7g4Z6/IqRG7iIi4wU83PMj98ZajdxFRIoF\nOtwHkhq5i4hMJtDhrp67iMjkAh7uJ0buCncRkWKBDveBEz13tWVERMYJdLgPjmSIhIxYONCfhojI\njAt0Kg6OpGmMR3SjDhGRCQId7gO6lruIyKQCHe75a7mr3y4iMlHAw10jdxGRyQQ83HW5XxGRyUwr\n3M3sajPbZWYdZvb5Kc67wMwyZvbemSuxNN2FSURkcqcMdzMLAbcC1wBrgfeb2doS5/0v4KGZLrIU\n3YVJRGRy0xm5Xwh0uPsed08B9wDXT3Lep4D7gO4ZrK+kbM4ZGlXPXURkMtMJ9zbgQNF2Z2HfGDNr\nA/4M+PZUH8jMbjKzzWa2uaen5+XWOs6QrisjIlLSTE2ofgP4nLvnpjrJ3W93943uvrG1tfVVPeBA\n4boyasuIiLzUdIa9B4HFRdvthX3FNgL3FF4pOhe41swy7v7jGalyEroipIhIadNJxk3ASjNbTj7U\nbwA+UHyCuy8/8baZfQf42ekMdjh5RcjGWo3cRUQmOmW4u3vGzD4J/AoIAXe6+3NmdnPh+G2nucZJ\nDafyI/dZMY3cRUQmmlYyuvuDwIMT9k0a6u5+46sv69RG0/n2vq4IKSLyUoFNxlQ2H+6RUGA/BRGR\n0yawyTia0chdRKSUwCZjujByjyrcRUReIrDJmCqM3KNqy4iIvERgk3Es3DVyFxF5icAmo8JdRKS0\nwCbjidUy4RrdP1VEZKLghnsmRzRco5tji4hMIrjhns0R02SqiMikApuOJ0buIiLyUoFNR4W7iEhp\ngU3HVFbhLiJSSmDTMZXJ6boyIiIlBDYdU5mcXp0qIlJCYNNRbRkRkdICm46aUBURKS2w6ZjK5nS5\nXxGREgKbjuq5i4iUFth01GoZEZHSApuOaU2oioiUFNh01ISqiEhpgU1HLYUUESktsOk4qglVEZGS\nApuOqYyWQoqIlBLIdHR3UlmtlhERKSWQ6ZjNOe66f6qISCmBTMcT909VuIuITC6Q6ZjKFMJdbRkR\nkUkFMh3Hwl0jdxGRSQUyHUcV7iIiUwpkOo713NWWERGZVCDTMa0JVRGRKQUyHTWhKiIytUCmoyZU\nRUSmFsh0VLiLiEwtkOk4qp67iMiUApmO6rmLiEwtkOmo1TIiIlObVjqa2dVmtsvMOszs85Mc/6CZ\nPWNmz5rZH81s/cyXepJG7iIiUztlOppZCLgVuAZYC7zfzNZOOG0vcLm7nwP8PXD7TBdaTBOqIiJT\nm046Xgh0uPsed08B9wDXF5/g7n9092OFzceB9pktczxdFVJEZGrTScc24EDRdmdhXykfB34x2QEz\nu8nMNpvZ5p6enulXOYFG7iIiU5vRdDSzK8iH++cmO+7ut7v7Rnff2Nra+oofZ1Q9dxGRKYWncc5B\nYHHRdnth3zhmtg64A7jG3Y/OTHmTS+vCYSIiU5pOOm4CVprZcjOLAjcADxSfYGZLgPuBv3D33TNf\n5nipTI5wjVFTY6f7oUREAumUI3d3z5jZJ4FfASHgTnd/zsxuLhy/Dfgy0AJ8y8wAMu6+8XQVncrk\n1G8XEZnCdNoyuPuDwIMT9t1W9PZfAn85s6WVlsoq3EVEphLIhExlcuq3i4hMIZAJmcrkiCjcRURK\nCmRCprI5YmrLiIiUFMiE1ISqiMjUApmQmlAVEZlaIBNSE6oiIlMLZEKqLSMiMrVAJmQqq9UyIiJT\nCWRCauQuIjK1QCakJlRFRKYWyIRMZXLE1JYRESkpkAmptoyIyNQCmZBqy4iITC2QCZnWtWVERKYU\nyITUyF1EZGqBS8hczklnXa9QFRGZQuASMnXi/qkauYuIlBS4hDwR7rrkr4hIaYFLyFQmH+6aUBUR\nKS1wCZlWW0ZE5JQCl5AnRu6aUBURKS1wCTkW7hq5i4iUFLiEHFW4i4icUuASUkshRUROLXAJqZ67\niMipBS4htVpGROTUApeQGrmLiJxa4BJSq2VERE4tcAk5rzHGtecsoLkuUu5SREQqVrjcBbxc5y+d\nw/lL55S7DBGRiha4kbuIiJyawl1EpAop3EVEqpDCXUSkCincRUSqkMJdRKQKKdxFRKqQwl1EpAqZ\nu5fngc16gH2v8N3nAr0zWM7poBpnhmqcGarx1auU+pa6e+upTipbuL8aZrbZ3TeWu46pqMaZoRpn\nhmp89Sq9vonUlhERqUIKdxGRKhTUcL+93AVMg2qcGapxZqjGV6/S6xsnkD13ERGZWlBH7iIiMoXA\nhbuZXW1mu8ysw8w+X+56AMxssZn9zsy2m9lzZvbpwv45ZvawmT1f+H92mesMmdmfzOxnFVpfs5nd\na2Y7zWyHmV1cgTX+beF7vM3MfmBm8XLXaGZ3mlm3mW0r2leyJjP7QuH5s8vM3lHGGr9a+F4/Y2b/\nbmbNlVZj0bHPmpmb2dxy1vhyBCrczSwE3ApcA6wF3m9ma8tbFQAZ4LPuvha4CPibQl2fB37j7iuB\n3xS2y+nTwI6i7Uqr75vAL919NbCefK0VU6OZtQH/Ddjo7mcDIeCGCqjxO8DVE/ZNWlPh5/IG4A2F\n9/lW4XlVjhofBs5293XAbuALFVgjZrYYeDuwv2hfuWqctkCFO3Ah0OHue9w9BdwDXF/mmnD3Lnff\nWnh7kHwotZGv7buF074LvKc8FYKZtQPvBO4o2l1J9TUBlwH/DODuKXfvp4JqLAgDtWYWBuqAQ5S5\nRnd/BOibsLtUTdcD97j7qLvvBTrIP69e8xrd/SF3zxQ2HwfaK63Ggq8DfwcUT1CWpcaXI2jh3gYc\nKNruLOyrGGa2DDgPeAKY7+5dhUOHgfllKgvgG+R/QHNF+yqpvuVAD3BXoXV0h5nNooJqdPeDwNfI\nj+C6gOPu/hAVVGORUjVV6nPoY8AvCm9XTI1mdj1w0N2fnnCoYmosJWjhXtHMrB64D/iMuw8UH/P8\nsqSyLE0ys3cB3e6+pdQ55ayvIAxsAL7t7ucBw0xob5S7xkLf+nryv4gWAbPM7EPF55S7xslUYk3F\nzOwW8q3Nu8tdSzEzqwO+CHy53LW8EkEL94PA4qLt9sK+sjOzCPlgv9vd7y/sPmJmCwvHFwLdZSrv\nEuA6M3uRfCvrrWb2/QqqD/Ijn053f6KwfS/5sK+kGt8G7HX3HndPA/cDb6qwGk8oVVNFPYfM7Ebg\nXcAH/eS67EqpcQX5X+RPF5477cBWM1tA5dRYUtDCfROw0syWm1mU/ITGA2WuCTMz8r3iHe7+f4oO\nPQB8pPD2R4CfvNa1Abj7F9y93d2Xkf+a/dbdP1Qp9QG4+2HggJmdVdh1JbCdCqqRfDvmIjOrK3zP\nryQ/v1JJNZ5QqqYHgBvMLGZmy4GVwJNlqA8zu5p8q/A6d08UHaqIGt39WXef5+7LCs+dTmBD4We1\nImqckrsH6h9wLfmZ9ReAW8pdT6GmS8n/2fsM8FTh37VAC/mVCs8DvwbmVECtbwF+Vni7ouoDzgU2\nF76OPwZmV2CNXwF2AtuA7wGxctcI/ID8HECafAB9fKqagFsKz59dwDVlrLGDfN/6xHPmtkqrccLx\nF4G55azx5fzTK1RFRKpQ0NoyIiIyDQp3EZEqpHAXEalCCncRkSqkcBcRqUIKdxGRKqRwFxGpQgp3\nEZEq9P8B1mxZLmU1oJ4AAAAASUVORK5CYII=\n",
|
210 | 201 | "text/plain": [
|
211 |
| - "<matplotlib.figure.Figure at 0x7f0790f4b198>" |
| 202 | + "<matplotlib.figure.Figure at 0x7fca284d6a20>" |
212 | 203 | ]
|
213 | 204 | },
|
214 | 205 | "metadata": {},
|
|
0 commit comments