-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathmerkle.rs
133 lines (106 loc) · 4 KB
/
merkle.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use core::fmt::Display;
use alloc::vec::Vec;
use super::{proof::Proof, traits::IsMerkleTreeBackend, utils::*};
#[derive(Debug)]
pub enum Error {
OutOfBounds,
}
impl Display for Error {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "Accessed node was out of bound")
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[derive(Clone)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct MerkleTree<B: IsMerkleTreeBackend> {
pub root: B::Node,
nodes: Vec<B::Node>,
}
const ROOT: usize = 0;
impl<B> MerkleTree<B>
where
B: IsMerkleTreeBackend,
{
pub fn build(unhashed_leaves: &[B::Data]) -> Option<Self> {
if unhashed_leaves.is_empty() {
return None;
}
let hashed_leaves: Vec<B::Node> = B::hash_leaves(unhashed_leaves);
//The leaf must be a power of 2 set
let hashed_leaves = complete_until_power_of_two(hashed_leaves);
let leaves_len = hashed_leaves.len();
//The length of leaves minus one inner node in the merkle tree
//The first elements are overwritten by build function, it doesn't matter what it's there
let mut nodes = vec![hashed_leaves[0].clone(); leaves_len - 1];
nodes.extend(hashed_leaves);
//Build the inner nodes of the tree
build::<B>(&mut nodes, leaves_len);
Some(MerkleTree {
root: nodes[ROOT].clone(),
nodes,
})
}
pub fn get_proof_by_pos(&self, pos: usize) -> Option<Proof<B::Node>> {
let pos = pos + self.nodes.len() / 2;
let Ok(merkle_path) = self.build_merkle_path(pos) else {
return None;
};
self.create_proof(merkle_path)
}
fn create_proof(&self, merkle_path: Vec<B::Node>) -> Option<Proof<B::Node>> {
Some(Proof { merkle_path })
}
fn build_merkle_path(&self, pos: usize) -> Result<Vec<B::Node>, Error> {
let mut merkle_path = Vec::new();
let mut pos = pos;
while pos != ROOT {
let Some(node) = self.nodes.get(sibling_index(pos)) else {
// out of bounds, exit returning the current merkle_path
return Err(Error::OutOfBounds);
};
merkle_path.push(node.clone());
pos = parent_index(pos);
}
Ok(merkle_path)
}
}
#[cfg(test)]
mod tests {
use super::*;
use lambdaworks_math::field::{element::FieldElement, fields::u64_prime_field::U64PrimeField};
use crate::merkle_tree::{merkle::MerkleTree, test_merkle::TestBackend};
const MODULUS: u64 = 13;
type U64PF = U64PrimeField<MODULUS>;
type FE = FieldElement<U64PF>;
#[test]
fn build_merkle_tree_from_a_power_of_two_list_of_values() {
let values: Vec<FE> = (1..5).map(FE::new).collect();
let merkle_tree = MerkleTree::<TestBackend<U64PF>>::build(&values).unwrap();
assert_eq!(merkle_tree.root, FE::new(7)); // Adjusted expected value
}
#[test]
// expected | 8 | 7 | 1 | 6 | 1 | 7 | 7 | 2 | 4 | 6 | 8 | 10 | 10 | 10 | 10 |
fn build_merkle_tree_from_an_odd_set_of_leaves() {
const MODULUS: u64 = 13;
type U64PF = U64PrimeField<MODULUS>;
type FE = FieldElement<U64PF>;
let values: Vec<FE> = (1..6).map(FE::new).collect();
let merkle_tree = MerkleTree::<TestBackend<U64PF>>::build(&values).unwrap();
assert_eq!(merkle_tree.root, FE::new(8)); // Adjusted expected value
}
#[test]
fn build_merkle_tree_from_a_single_value() {
const MODULUS: u64 = 13;
type U64PF = U64PrimeField<MODULUS>;
type FE = FieldElement<U64PF>;
let values: Vec<FE> = vec![FE::new(1)]; // Single element
let merkle_tree = MerkleTree::<TestBackend<U64PF>>::build(&values).unwrap();
assert_eq!(merkle_tree.root, FE::new(2)); // Adjusted expected value
}
#[test]
fn build_empty_tree_should_not_panic() {
assert!(MerkleTree::<TestBackend<U64PF>>::build(&[]).is_none());
}
}