-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
343 lines (310 loc) · 15.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
import argparse
import random
import data_util
from data_util import ClothSample
import numpy as np
import torch
import time
from pytorch_pretrained_bert.modeling import BertForCloth
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
import functools
def logging(s, log_path, print_=True, log_=True):
if print_:
print(s)
if log_:
with open(log_path, 'a+') as f_log:
f_log.write(s + '\n')
def get_logger(log_path, **kwargs):
return functools.partial(logging, log_path=log_path, **kwargs)
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default='./data',
type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default='bert-base-uncased', type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--task_name",
default='cloth',
type=str,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default='EXP/',
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--train_batch_size",
default=4,
type=int,
help="Total batch size for training.")
parser.add_argument("--cache_size",
default=256,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--num_log_steps",
default=10,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--optimize_on_cpu',
default=False,
action='store_true',
help="Whether to perform optimization and keep the optimizer averages on CPU")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=128,
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
args = parser.parse_args()
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
suffix = time.strftime('%Y%m%d-%H%M%S')
args.output_dir = os.path.join(args.output_dir, suffix)
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
os.makedirs(args.output_dir, exist_ok=True)
logging = get_logger(os.path.join(args.output_dir, 'log.txt'))
data_file = {'train':'train', 'valid':'valid', 'test':'test'}
for key in data_file.keys():
data_file[key] = data_file[key] + '-' + args.bert_model + '.pt'
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
if args.fp16:
logging("16-bits training currently not supported in distributed training")
args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
logging("device {} n_gpu {} distributed training {}".format(device, n_gpu, bool(args.local_rank != -1)))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
task_name = args.task_name.lower()
num_train_steps = None
train_data = None
if args.do_train:
train_data = data_util.Loader(args.data_dir, data_file['train'], args.cache_size, args.train_batch_size, device)
num_train_steps = int(
train_data.data_num / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
# Prepare model
model = BertForCloth.from_pretrained(args.bert_model,
cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank))
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
if args.fp16:
param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
for n, param in model.named_parameters()]
elif args.optimize_on_cpu:
param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
for n, param in model.named_parameters()]
else:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
t_total = num_train_steps
if args.local_rank != -1:
t_total = t_total // torch.distributed.get_world_size()
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=t_total)
global_step = 0
if args.do_train:
logging("***** Running training *****")
logging(" Batch size = {}".format(args.train_batch_size))
logging(" Num steps = {}".format(num_train_steps))
model.train()
for _ in range(int(args.num_train_epochs)):
tr_loss = 0
tr_acc = 0
nb_tr_examples, nb_tr_steps = 0, 0
for inp, tgt in train_data.data_iter():
loss, acc, _, _ = model(inp, tgt)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
acc = acc.sum()
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
tr_acc += acc.item()
#print(tr_acc)
nb_tr_examples += inp[-2].sum()
nb_tr_steps += 1
if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
if args.fp16 or args.optimize_on_cpu:
if args.fp16 and args.loss_scale != 1.0:
# scale down gradients for fp16 training
for param in model.parameters():
if param.grad is not None:
param.grad.data = param.grad.data / args.loss_scale
is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
if is_nan:
logging("FP16 TRAINING: Nan in gradients, reducing loss scaling")
args.loss_scale = args.loss_scale / 2
model.zero_grad()
continue
optimizer.step()
copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
else:
optimizer.step()
model.zero_grad()
global_step += 1
if (global_step % args.num_log_steps == 0):
logging('step: {} | train loss: {} | train acc {}'.format(
global_step, tr_loss/nb_tr_examples, tr_acc/nb_tr_examples))
tr_loss = 0
tr_acc = 0
nb_tr_examples = 0
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logging("***** Running evaluation *****")
logging(" Batch size = {}".format(args.eval_batch_size))
valid_data = data_util.Loader(args.data_dir, data_file['valid'], args.cache_size, args.eval_batch_size, device)
# Run prediction for full data
model.eval()
eval_loss, eval_accuracy, eval_h_acc, eval_m_acc = 0, 0, 0, 0
nb_eval_steps, nb_eval_examples, nb_eval_h_examples = 0, 0, 0
for inp, tgt in valid_data.data_iter(shuffle=False):
with torch.no_grad():
tmp_eval_loss, tmp_eval_accuracy, tmp_h_acc, tmp_m_acc = model(inp, tgt)
if n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu.
tmp_eval_accuracy = tmp_eval_accuracy.sum()
eval_loss += tmp_eval_loss.item()
eval_accuracy += tmp_eval_accuracy.item()
eval_h_acc += tmp_h_acc.item()
eval_m_acc += tmp_m_acc.item()
nb_eval_examples += inp[-2].sum().item()
nb_eval_h_examples += (inp[-2].sum(-1) * inp[-1]).sum().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
eval_h_acc = eval_h_acc / nb_eval_h_examples
eval_m_acc = eval_m_acc / (nb_eval_examples - nb_eval_h_examples)
result = {'valid_eval_loss': eval_loss,
'valid_eval_accuracy': eval_accuracy,
'valid_h_acc':eval_h_acc,
'valid_m_acc':eval_m_acc,
'global_step': global_step}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logging("***** Valid Eval results *****")
for key in sorted(result.keys()):
logging(" {} = {}".format(key, str(result[key])))
writer.write("%s = %s\n" % (key, str(result[key])))
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
test_data = data_util.Loader(args.data_dir, data_file['test'], args.cache_size, args.eval_batch_size, device)
logging("***** Running test evaluation *****")
logging(" Batch size = {}".format(args.eval_batch_size))
# Run prediction for full data
model.eval()
eval_loss, eval_accuracy, eval_h_acc, eval_m_acc = 0, 0, 0, 0
nb_eval_steps, nb_eval_examples, nb_eval_h_examples = 0, 0, 0
for inp, tgt in test_data.data_iter(shuffle=False):
with torch.no_grad():
tmp_eval_loss, tmp_eval_accuracy, tmp_h_acc, tmp_m_acc = model(inp, tgt)
if n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu.
tmp_eval_accuracy = tmp_eval_accuracy.sum()
eval_loss += tmp_eval_loss.item()
eval_accuracy += tmp_eval_accuracy.item()
eval_h_acc += tmp_h_acc.item()
eval_m_acc += tmp_m_acc.item()
nb_eval_examples += inp[-2].sum().item()
nb_eval_h_examples += (inp[-2].sum(-1) * inp[-1]).sum().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
eval_h_acc = eval_h_acc / nb_eval_h_examples
eval_m_acc = eval_m_acc / (nb_eval_examples - nb_eval_h_examples)
result = {'valid_eval_loss': eval_loss,
'valid_eval_accuracy': eval_accuracy,
'valid_h_acc':eval_h_acc,
'valid_m_acc':eval_m_acc,
'global_step': global_step}
output_eval_file = os.path.join(args.output_dir, "test_results.txt")
with open(output_eval_file, "w") as writer:
logging("***** Test Eval results *****")
for key in sorted(result.keys()):
logging(" {} = {}".format(key, str(result[key])))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
main()