forked from NVIDIA/GenerativeAIExamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchains.py
244 lines (196 loc) · 9.39 KB
/
chains.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LLM Chains for executing Retrival Augmented Generation."""
import logging
import os
from typing import Generator, List
import pandas as pd
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
PromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_core.output_parsers.string import StrOutputParser
from pandasai import Agent as PandasAI_Agent
from pandasai.responses.response_parser import ResponseParser
from integrations.pandasai.llms.nv_aiplay import NVIDIA as PandasAI_NVIDIA
from RetrievalAugmentedGeneration.common.base import BaseExample
from RetrievalAugmentedGeneration.common.utils import get_config, get_llm
# pylint: disable=no-name-in-module, disable=import-error
from RetrievalAugmentedGeneration.example.csv_utils import (
extract_df_desc,
get_prompt_params,
parse_prompt_config,
is_result_valid
)
logger = logging.getLogger(__name__)
settings = get_config()
INGESTED_CSV_FILES_LIST = "ingested_csv_files.txt"
class PandasDataFrame(ResponseParser):
"""Returns Pandas Dataframe instead of SmartDataFrame"""
def __init__(self, context) -> None:
super().__init__(context)
def format_dataframe(self, result):
return result["value"]
class CSVChatbot(BaseExample):
"""RAG example showcasing CSV parsing using Pandas AI Agent"""
def compare_csv_columns(self, ref_csv_file, current_csv_file):
"""Compares columns of two CSV files"""
ref_csv_file = ref_csv_file.replace('\n', '')
current_csv_file = current_csv_file.replace('\n', '')
logger.info(f"ref_csv_file: {ref_csv_file}, current_csv_file: {current_csv_file}")
ref_df = pd.read_csv(ref_csv_file)
curr_df = pd.read_csv(current_csv_file)
if not curr_df.columns.equals(ref_df.columns):
return False
else:
return True
def read_and_concatenate_csv(self, file_paths_txt):
"""Reads CSVs and concatenates their data"""
file_paths = None
with open(file_paths_txt, "r", encoding="UTF-8") as file:
file_paths = file.read().splitlines()
concatenated_df = pd.DataFrame()
reference_columns = None
reference_file = None
for i, path in enumerate(file_paths):
df = pd.read_csv(path)
if i == 0:
reference_columns = df.columns
concatenated_df = df
reference_file = path
logger.info(f"reference_columns: {reference_columns}, reference_file: {reference_file}")
else:
if not df.columns.equals(reference_columns):
raise ValueError(
f"Columns of the file {path} do not match the reference columns of {reference_file} file."
)
concatenated_df = pd.concat([concatenated_df, df], ignore_index=True)
return concatenated_df
def ingest_docs(self, filepath: str, filename: str):
"""Ingest documents to the VectorDB."""
if not filename.endswith(".csv"):
raise ValueError(f"{filename} is not a valid CSV file")
with open(INGESTED_CSV_FILES_LIST, "a+", encoding="UTF-8") as f:
ref_csv_path = None
try:
f.seek(0)
ref_csv_path = f.readline()
except Exception as e:
# Skip reading reference file path as this is the first file
pass
if not ref_csv_path:
f.write(filepath + "\n")
elif self.compare_csv_columns(ref_csv_path, filepath):
f.write(filepath + "\n")
else:
raise ValueError(
f"Columns of the file {filepath} do not match the reference columns of {ref_csv_path} file."
)
logger.info("Document %s ingested successfully", filename)
def llm_chain(
self, query: str, chat_history: List["Message"], **kwargs
) -> Generator[str, None, None]:
"""Execute a simple LLM chain using the components defined above."""
logger.info("Using llm to generate response directly without knowledge base.")
# WAR: Disable chat history (UI consistency).
chat_history = []
system_message = [("system", get_config().prompts.chat_template)]
conversation_history = [(msg.role, msg.content) for msg in chat_history]
user_input = [("user", "{input}")]
# Checking if conversation_history is not None and not empty
prompt = ChatPromptTemplate.from_messages(
system_message + conversation_history + user_input
) if conversation_history else ChatPromptTemplate.from_messages(
system_message + user_input
)
logger.info(f"Using prompt for response generation: {prompt.format(input=query)}")
chain = prompt | get_llm(**kwargs) | StrOutputParser()
return chain.stream({"input": query})
def rag_chain(self, query: str, chat_history: List["Message"], **kwargs) -> Generator[str, None, None]:
"""Execute a Retrieval Augmented Generation chain using the components defined above."""
logger.info("Using rag to generate response from document")
# WAR: Disable chat history (UI consistency).
chat_history = []
llm = get_llm(**kwargs)
if not os.path.exists(INGESTED_CSV_FILES_LIST):
return iter(["No CSV file ingested"])
df = self.read_and_concatenate_csv(file_paths_txt=INGESTED_CSV_FILES_LIST)
df = df.fillna(0)
df_desc = extract_df_desc(df)
prompt_config = parse_prompt_config(
"RetrievalAugmentedGeneration/example/csv_prompt_config.yaml"
)
logger.info(prompt_config.get("csv_prompts", []))
data_retrieval_prompt_params = get_prompt_params(
prompt_config.get("csv_prompts", [])
)
llm_data_retrieval = PandasAI_NVIDIA(temperature=0.2, model=settings.llm.model_name_pandas_ai)
config_data_retrieval = {
"llm": llm_data_retrieval,
"response_parser": PandasDataFrame,
"max_retries": 6
}
agent_data_retrieval = PandasAI_Agent(
[df], config=config_data_retrieval, memory_size=20
)
data_retrieval_prompt = ChatPromptTemplate(
messages=[
SystemMessagePromptTemplate.from_template(
prompt_config.get("csv_data_retrieval_template", [])
),
HumanMessagePromptTemplate.from_template("{query}"),
],
input_variables=["description", "instructions", "data_frame", "query"],
)
conversation_history = [(msg.role, msg.content) for msg in chat_history]
conversation_history_messages = ChatPromptTemplate.from_messages(conversation_history).messages
# Insert conversation_history between data_retrieval_prompt's SystemMessage & HumanMessage (query)
if conversation_history_messages:
data_retrieval_prompt.messages[1:1] = conversation_history_messages
result_df = agent_data_retrieval.chat(
data_retrieval_prompt.format_prompt(
description=data_retrieval_prompt_params.get("description"),
instructions=data_retrieval_prompt_params.get("instructions"),
data_frame=df_desc,
query=query,
).to_string()
)
logger.info("Result Data Frame: %s", result_df)
if not is_result_valid(result_df):
logger.warning("Retrieval failed to get any relevant context")
return iter(["No response generated from LLM, make sure your query is relavent to the ingested document."])
result_df = str(result_df)
response_prompt_template = PromptTemplate(
template=prompt_config.get("csv_response_template", []),
input_variables=["query", "data"],
)
response_prompt = response_prompt_template.format(query=query, data=result_df)
logger.info("Using prompt for response: %s", response_prompt)
chain = response_prompt_template | llm | StrOutputParser()
return chain.stream({"query": query, "data": result_df})
def get_documents(self) -> List[str]:
"""Retrieves filenames stored in the vector store."""
decoded_filenames = []
if os.path.exists(INGESTED_CSV_FILES_LIST):
with open(INGESTED_CSV_FILES_LIST, "r", encoding="UTF-8") as file:
for csv_file_path in file.read().splitlines():
decoded_filenames.append(os.path.basename(csv_file_path))
return decoded_filenames
def delete_documents(self, filenames: List[str]):
"""Delete documents from the vector index."""
logger.error("delete_documents not implemented")
return True