-
Notifications
You must be signed in to change notification settings - Fork 333
/
Copy pathrpn_label_encoder.py
226 lines (213 loc) · 9.15 KB
/
rpn_label_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np # Used for newaxis
import tree
from keras_cv import bounding_box
from keras_cv.backend import assert_tf_keras
from keras_cv.backend import keras
from keras_cv.backend import ops
from keras_cv.bounding_box import iou
from keras_cv.layers.object_detection import box_matcher
from keras_cv.layers.object_detection import sampling
from keras_cv.utils import target_gather
@keras.utils.register_keras_serializable(package="keras_cv")
class _RpnLabelEncoder(keras.layers.Layer):
"""Transforms the raw labels into training targets for region proposal
network (RPN).
# TODO(tanzhenyu): consider unifying with _ROISampler.
This is different from _ROISampler for a couple of reasons:
1) This deals with unbatched input, dict of anchors and potentially ragged
labels.
2) This deals with ground truth boxes, while _ROISampler deals with padded
ground truth boxes with value -1 and padded ground truth classes with
value -1.
3) this returns positive class target as 1, while _ROISampler returns
positive class target as-is. (All negative class target are 0)
The final classification loss will use one hot and #num_fg_classes + 1
4) this returns #num_anchors dense targets, while _ROISampler returns
#num_sampled_rois dense targets.
5) this returns all positive box targets, while _ROISampler still samples
positive box targets, while all negative box targets are also ignored
in regression loss.
Args:
anchor_format: The format of bounding boxes for anchors to generate. Refer
[to the keras.io docs](https://keras.io/api/keras_cv/bounding_box/formats/) for more details on supported bounding box
formats.
ground_truth_box_format: The format of bounding boxes for ground truth
boxes to generate.
positive_threshold: the float threshold to set an anchor to positive match
to gt box. Values above it are positive matches.
negative_threshold: the float threshold to set an anchor to negative match
to gt box. Values below it are negative matches.
samples_per_image: for each image, the number of positive and negative
samples to generate.
positive_fraction: the fraction of positive samples to the total samples.
""" # noqa: E501
def __init__(
self,
anchor_format,
ground_truth_box_format,
positive_threshold,
negative_threshold,
samples_per_image,
positive_fraction,
box_variance=[0.1, 0.1, 0.2, 0.2],
**kwargs,
):
assert_tf_keras("keras_cv.layers._RpnLabelEncoder")
super().__init__(**kwargs)
self.anchor_format = anchor_format
self.ground_truth_box_format = ground_truth_box_format
self.positive_threshold = positive_threshold
self.negative_threshold = negative_threshold
self.samples_per_image = samples_per_image
self.positive_fraction = positive_fraction
self.box_matcher = box_matcher.BoxMatcher(
thresholds=[negative_threshold, positive_threshold],
match_values=[-1, -2, 1],
force_match_for_each_col=False,
)
self.box_variance = box_variance
self.built = True
self._positives = keras.metrics.Mean(name="percent_boxes_matched")
def call(
self,
anchors_dict,
gt_boxes,
gt_classes,
):
"""
Args:
anchors_dict: dict of [num_anchors, 4] or [batch_size, num_anchors, 4]
float Tensor for each level.
gt_boxes: [num_gt, 4] or [batch_size, num_anchors] float Tensor.
gt_classes: [num_gt, 1] float or integer Tensor.
Returns:
box_targets: dict of [num_anchors, 4] or for each level.
box_weights: dict of [num_anchors, 1] for each level.
class_targets: dict of [num_anchors, 1] for each level.
class_weights: dict of [num_anchors, 1] for each level.
"""
pack = False
anchors = anchors_dict
if isinstance(anchors, dict):
pack = True
anchors = ops.concatenate(tree.flatten(anchors), axis=0)
anchors = bounding_box.convert_format(
anchors, source=self.anchor_format, target="yxyx"
)
gt_boxes = bounding_box.convert_format(
gt_boxes, source=self.ground_truth_box_format, target="yxyx"
)
# [num_anchors, num_gt] or [batch_size, num_anchors, num_gt]
similarity_mat = iou.compute_iou(
anchors, gt_boxes, bounding_box_format="yxyx"
)
# [num_anchors] or [batch_size, num_anchors]
matched_gt_indices, matched_vals = self.box_matcher(similarity_mat)
# [num_anchors] or [batch_size, num_anchors]
positive_matches = ops.equal(matched_vals, 1)
# currently SyncOnReadVariable does not support `assign_add` in
# cross-replica.
# self._positives.update_state(
# tf.reduce_sum(tf.cast(positive_matches, tf.float32), axis=-1)
# )
negative_matches = ops.equal(matched_vals, -1)
# [num_anchors, 4] or [batch_size, num_anchors, 4]
matched_gt_boxes = target_gather._target_gather(
gt_boxes, matched_gt_indices
)
# [num_anchors, 4] or [batch_size, num_anchors, 4], used as `y_true` for
# regression loss
encoded_box_targets = bounding_box._encode_box_to_deltas(
anchors,
matched_gt_boxes,
anchor_format="yxyx",
box_format="yxyx",
variance=self.box_variance,
)
# [num_anchors, 1] or [batch_size, num_anchors, 1]
box_sample_weights = ops.cast(
positive_matches[..., np.newaxis], gt_boxes.dtype
)
# [num_anchors, 1] or [batch_size, num_anchors, 1]
positive_mask = ops.expand_dims(positive_matches, axis=-1)
# set all negative and ignored matches to 0, and all positive matches to
# 1 [num_anchors, 1] or [batch_size, num_anchors, 1]
positive_classes = ops.ones_like(positive_mask, dtype=gt_classes.dtype)
negative_classes = ops.zeros_like(positive_mask, dtype=gt_classes.dtype)
# [num_anchors, 1] or [batch_size, num_anchors, 1]
class_targets = ops.where(
positive_mask, positive_classes, negative_classes
)
# [num_anchors] or [batch_size, num_anchors]
sampled_indicators = sampling.balanced_sample(
positive_matches,
negative_matches,
self.samples_per_image,
self.positive_fraction,
)
# [num_anchors, 1] or [batch_size, num_anchors, 1]
class_sample_weights = ops.cast(
sampled_indicators[..., np.newaxis], gt_classes.dtype
)
if pack:
encoded_box_targets = self.unpack_targets(
encoded_box_targets, anchors_dict
)
box_sample_weights = self.unpack_targets(
box_sample_weights, anchors_dict
)
class_targets = self.unpack_targets(class_targets, anchors_dict)
class_sample_weights = self.unpack_targets(
class_sample_weights, anchors_dict
)
return (
encoded_box_targets,
box_sample_weights,
class_targets,
class_sample_weights,
)
def unpack_targets(self, targets, anchors_dict):
target_shape = len(targets.get_shape().as_list())
if target_shape != 2 and target_shape != 3:
raise ValueError(
"unpacking targets must be rank 2 or rank 3, got "
f"{target_shape}"
)
unpacked_targets = {}
count = 0
for level, anchors in anchors_dict.items():
num_anchors_lvl = anchors.get_shape().as_list()[0]
if target_shape == 2:
unpacked_targets[level] = targets[
count : count + num_anchors_lvl, ...
]
else:
unpacked_targets[level] = targets[
:, count : count + num_anchors_lvl, ...
]
count += num_anchors_lvl
return unpacked_targets
def get_config(self):
config = {
"anchor_format": self.anchor_format,
"ground_truth_box_format": self.ground_truth_box_format,
"positive_threshold": self.positive_threshold,
"negative_threshold": self.negative_threshold,
"samples_per_image": self.samples_per_image,
"positive_fraction": self.positive_fraction,
"box_variance": self.box_variance,
}
return config