forked from microsoft/kernel-memory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDependencyInjection.cs
188 lines (168 loc) · 7.88 KB
/
DependencyInjection.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Copyright (c) Microsoft. All rights reserved.
using System.Net.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.KernelMemory.AI;
using Microsoft.KernelMemory.AI.OpenAI;
#pragma warning disable IDE0130 // reduce number of "using" statements
// ReSharper disable once CheckNamespace - reduce number of "using" statements
namespace Microsoft.KernelMemory;
public static partial class KernelMemoryBuilderExtensions
{
// Using GPT 3.5 Turbo - https://platform.openai.com/docs/models/gpt-3-5
private const string DefaultTextModel = "gpt-3.5-turbo-16k";
private const int DefaultTextModelMaxToken = 16_384;
// Using Ada v2
private const string DefaultEmbeddingModel = "text-embedding-ada-002";
private const int DefaultEmbeddingModelMaxToken = 8_191;
/// <summary>
/// Use default OpenAI models (3.5-Turbo and Ada-002) and settings for ingestion and retrieval.
/// </summary>
/// <param name="builder">Kernel Memory builder</param>
/// <param name="apiKey">OpenAI API Key</param>
/// <param name="organization">OpenAI Organization ID (usually not required)</param>
/// <param name="textGenerationTokenizer">Tokenizer used to count tokens used by prompts</param>
/// <param name="textEmbeddingTokenizer">Tokenizer used to count tokens sent to the embedding generator</param>
/// <param name="loggerFactory">.NET Logger factory</param>
/// <param name="onlyForRetrieval">Whether to use OpenAI defaults only for ingestion, and not for retrieval (search and ask API)</param>
/// <param name="httpClient">Custom <see cref="HttpClient"/> for HTTP requests.</param>
/// <returns>KM builder instance</returns>
public static IKernelMemoryBuilder WithOpenAIDefaults(
this IKernelMemoryBuilder builder,
string apiKey,
string? organization = null,
ITextTokenizer? textGenerationTokenizer = null,
ITextTokenizer? textEmbeddingTokenizer = null,
ILoggerFactory? loggerFactory = null,
bool onlyForRetrieval = false,
HttpClient? httpClient = null)
{
textGenerationTokenizer ??= new DefaultGPTTokenizer();
textEmbeddingTokenizer ??= new DefaultGPTTokenizer();
var openAIConfig = new OpenAIConfig
{
TextModel = DefaultTextModel,
TextModelMaxTokenTotal = DefaultTextModelMaxToken,
EmbeddingModel = DefaultEmbeddingModel,
EmbeddingModelMaxTokenTotal = DefaultEmbeddingModelMaxToken,
APIKey = apiKey,
OrgId = organization
};
openAIConfig.Validate();
builder.Services.AddOpenAITextEmbeddingGeneration(openAIConfig, textEmbeddingTokenizer, httpClient);
builder.Services.AddOpenAITextGeneration(openAIConfig, textGenerationTokenizer, httpClient);
if (!onlyForRetrieval)
{
builder.AddIngestionEmbeddingGenerator(new OpenAITextEmbeddingGenerator(
config: openAIConfig,
textTokenizer: textEmbeddingTokenizer,
loggerFactory: loggerFactory,
httpClient: httpClient));
}
return builder;
}
/// <summary>
/// Use OpenAI models for ingestion and retrieval
/// </summary>
/// <param name="builder">Kernel Memory builder</param>
/// <param name="config">OpenAI settings</param>
/// <param name="textGenerationTokenizer">Tokenizer used to count tokens used by prompts</param>
/// <param name="textEmbeddingTokenizer">Tokenizer used to count tokens sent to the embedding generator</param>
/// <param name="onlyForRetrieval">Whether to use OpenAI only for ingestion, not for retrieval (search and ask API)</param>
/// <param name="httpClient">Custom <see cref="HttpClient"/> for HTTP requests.</param>
/// <returns>KM builder instance</returns>
public static IKernelMemoryBuilder WithOpenAI(
this IKernelMemoryBuilder builder,
OpenAIConfig config,
ITextTokenizer? textGenerationTokenizer = null,
ITextTokenizer? textEmbeddingTokenizer = null,
bool onlyForRetrieval = false,
HttpClient? httpClient = null)
{
config.Validate();
textGenerationTokenizer ??= new DefaultGPTTokenizer();
textEmbeddingTokenizer ??= new DefaultGPTTokenizer();
builder.WithOpenAITextEmbeddingGeneration(config, textEmbeddingTokenizer, onlyForRetrieval, httpClient);
builder.WithOpenAITextGeneration(config, textGenerationTokenizer);
return builder;
}
/// <summary>
/// Use OpenAI to generate text embedding.
/// </summary>
/// <param name="builder">Kernel Memory builder</param>
/// <param name="config">OpenAI settings</param>
/// <param name="textTokenizer">Tokenizer used to count tokens sent to the embedding generator</param>
/// <param name="onlyForRetrieval">Whether to use OpenAI only for ingestion, not for retrieval (search and ask API)</param>
/// <param name="httpClient">Custom <see cref="HttpClient"/> for HTTP requests.</param>
/// <returns>KM builder instance</returns>
public static IKernelMemoryBuilder WithOpenAITextEmbeddingGeneration(
this IKernelMemoryBuilder builder,
OpenAIConfig config,
ITextTokenizer? textTokenizer = null,
bool onlyForRetrieval = false,
HttpClient? httpClient = null)
{
config.Validate();
textTokenizer ??= new DefaultGPTTokenizer();
builder.Services.AddOpenAITextEmbeddingGeneration(config, httpClient: httpClient);
if (!onlyForRetrieval)
{
builder.AddIngestionEmbeddingGenerator(
new OpenAITextEmbeddingGenerator(config, textTokenizer, loggerFactory: null, httpClient));
}
return builder;
}
/// <summary>
/// Use OpenAI to generate text, e.g. answers and summaries.
/// </summary>
/// <param name="builder">Kernel Memory builder</param>
/// <param name="config">OpenAI settings</param>
/// <param name="textTokenizer">Tokenizer used to count tokens used by prompts</param>
/// <param name="httpClient">Custom <see cref="HttpClient"/> for HTTP requests.</param>
/// <returns>KM builder instance</returns>
public static IKernelMemoryBuilder WithOpenAITextGeneration(
this IKernelMemoryBuilder builder,
OpenAIConfig config,
ITextTokenizer? textTokenizer = null,
HttpClient? httpClient = null)
{
config.Validate();
textTokenizer ??= new DefaultGPTTokenizer();
builder.Services.AddOpenAITextGeneration(config, textTokenizer, httpClient);
return builder;
}
}
public static partial class DependencyInjection
{
public static IServiceCollection AddOpenAITextEmbeddingGeneration(
this IServiceCollection services,
OpenAIConfig config,
ITextTokenizer? textTokenizer = null,
HttpClient? httpClient = null)
{
config.Validate();
textTokenizer ??= new DefaultGPTTokenizer();
return services
.AddSingleton<ITextEmbeddingGenerator>(
serviceProvider => new OpenAITextEmbeddingGenerator(
config: config,
textTokenizer: textTokenizer,
loggerFactory: serviceProvider.GetService<ILoggerFactory>(),
httpClient));
}
public static IServiceCollection AddOpenAITextGeneration(
this IServiceCollection services,
OpenAIConfig config,
ITextTokenizer? textTokenizer = null,
HttpClient? httpClient = null)
{
config.Validate();
textTokenizer ??= new DefaultGPTTokenizer();
return services
.AddSingleton<ITextGenerator, OpenAITextGenerator>(serviceProvider => new OpenAITextGenerator(
config: config,
textTokenizer: textTokenizer,
loggerFactory: serviceProvider.GetService<ILoggerFactory>(),
httpClient));
}
}