-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGUI.py
executable file
·213 lines (160 loc) · 6.9 KB
/
GUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import Tkinter
import subprocess as sub
from skimage import io, img_as_float
import numpy as np
import os
import pickle
import glob
from PIL import Image
import time
import cv2
from matplotlib import pyplot as plt
import scipy.misc
training_set_image = np.empty(shape=[0, 784])
training_set_labels = np.ndarray((0, ), int)
test_set_image = np.empty(shape=[0, 784])
test_set_labels = np.ndarray((0, ), int)
def conversion(dir_name):
for i in range(0, 10):
str_i = str(i)
write("Currently in directory %s/%s" % (dir_name, str_i))
for filename in os.listdir(dir_name + str_i):
write(filename)
image = io.imread(dir_name + str_i + "/" + filename)
image = img_as_float(image)
files = os.path.splitext(filename)
fullname = os.path.join(dir_name, str_i, files[0] + "." + "jpg")
os.remove(os.path.join(dir_name, str_i, files[0] + "." + "png"))
io.imsave(fullname, image)
def segment_images():
img = cv2.imread('/home/killwithme/Desktop/projects/final_year_project/digits.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cells = [np.hsplit(row, 100) for row in np.vsplit(gray, 50)]
rows = len(cells)
cols = len(cells[0])
k = 0
image_num = 0
initial_dir = '/home/killwithme/Desktop/projects/final_year_project/training-images'
# creating initial directories
if not os.path.exists('/home/killwithme/Desktop/projects/final_year_project/training-images'):
os.makedirs('/home/killwithme/Desktop/projects/final_year_project/training-images')
write('created directory training-images')
os.makedirs('/home/killwithme/Desktop/projects/final_year_project/test-images')
write('created directory test-images')
else:
write('Folders already exist')
initial_dir = '/home/killwithme/Desktop/projects/final_year_project/test-images'
inside_dir = 0
image_num = 0
# creating inside directories and saving images as JPEG
for i in range(0, rows):
for j in range(0, cols):
if(image_num % 250 == 0):
if(initial_dir == '/home/killwithme/Desktop/projects/final_year_project/training-images'):
initial_dir = '/home/killwithme/Desktop/projects/final_year_project/test-images'
else:
initial_dir = '/home/killwithme/Desktop/projects/final_year_project/training-images'
if not os.path.exists(initial_dir + '/' + str(k)):
os.makedirs(initial_dir + '/' + str(k))
write('created directory ' + initial_dir + '/' + str(k))
else:
write('Folder already exists')
scipy.misc.imsave(initial_dir + '/' + str(k) + '/' + str(image_num) + '.jpg', cells[i][j])
image_num += 1
if(image_num % 500 == 0):
k += 1
def convert_grayscale_to_float64():
write("Starting conversion from Grayscale to float64")
dirName = "test-images/"
conversion(dirName)
dirName = "training-images/"
conversion(dirName)
# for i in range(1, 10):
# str_i = str(i)
# for filename in os.listdir(dir_name + str_i):
# write(filename)
# image = io.imread(dir_name + str_i + "/" + filename)
# image = img_as_float(image)
# files = os.path.splitext(filename)
# fullname = os.path.join(dir_name, str_i, files[0] + "." + "jpg")
# os.remove(os.path.join(dir_name, str_i, files[0] + "." + "png"))
# io.imsave(fullname, image)
write("Images converted successfully")
def create_set(setValue): #setValue = 1 => training_set, setValue = 2 => test_set
if(setValue == 1):
targetFolder = "training-images"
else:
targetFolder = "test-images"
numFolders = 10
for index in range(0, numFolders):
label = index
for file in glob.glob("./" + targetFolder + "/" + str(index) + "/*.jpg"):
image = io.imread(file)
image = img_as_float(image)
li = []
for x in range(0, 28):
for y in range(0, 28):
li.append(image[x][y])
if(setValue == 1):
global training_set_image
global training_set_labels
training_set_image = np.append(training_set_image, [li], axis=0)
training_set_labels = np.append(training_set_labels, [label ], axis=0)
else:
global test_set_image
global test_set_labels
test_set_image = np.append(test_set_image, [li], axis=0)
test_set_labels = np.append(test_set_labels, [label ], axis=0)
index = index + 1
def create_training_set():
create_set(1)
def create_test_set():
create_set(2)
def pickleData():
create_training_set()
create_test_set()
set_list = [(training_set_image, training_set_labels), (test_set_image, test_set_labels)]
PIK = "/home/killwithme/Desktop/projects/final_year_project/custom-data-pickle.dat"
with open(PIK, "ab") as fileOpen:
pickle.dump(set_list, fileOpen)
write("Pickle file created")
def write(string):
global text_box
text_box.config(state=Tkinter.NORMAL)
text_box.insert("end", string + "\n")
text_box.see("end")
text_box.config(state=Tkinter.DISABLED)
def normalise():
time.sleep(2)
write("Images normalised successfully")
def close_window():
root.destroy()
def center_window(width=300, height=200):
# get screen width and height
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
# calculate position x and y coordinates
x = (screen_width/2) - (width/2)
y = (screen_height/2) - (height/2)
root.geometry('%dx%d+%d+%d' % (width, height, x, y))
root = Tkinter.Tk()
root.title('Optical Character Recognition Preprocessing')
# WINDOW_SIZE = "600x400"
# root.geometry(WINDOW_SIZE)
center_window(800, 600)
text_box = Tkinter.Text(root, state=Tkinter.DISABLED)
text_box.grid(row=0, column=1, columnspan=8)
button_1 = Tkinter.Button(root, text="Segment Images", command=segment_images)
button_1.grid(row=1, column=1)
button_2 = Tkinter.Button(root, text="Resize Images", command=lambda: sub.call('bash ./Desktop/projects/final_year_project/resize-script.sh', shell=True))
# button_1 = Tkinter.Button(root, text="Resize Images", command=resizeImages)
button_2.grid(row=1, column=2)
button_3 = Tkinter.Button(root, text="Convert Grayscale to float64", command=convert_grayscale_to_float64)
button_3.grid(row=1, column=3)
button_4 = Tkinter.Button(root, text="Normalize Images", command=normalise)
button_4.grid(row=1, column=4)
button_5 = Tkinter.Button(root, text="Create Pickle File", command=pickleData)
button_5.grid(row=1, column=5)
button_6 = Tkinter.Button(root, text="Exit", command=close_window)
button_6.grid(row=1, column=6)
root.mainloop()