-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathplot_helpers.py
407 lines (337 loc) · 15.5 KB
/
plot_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license. See LICENSE.md file in the project root
# for full license information.
# ==============================================================================
from __future__ import print_function
from builtins import str
import sys, os, time
import numpy as np
from easydict import EasyDict
from builtins import range
import copy, textwrap
from PIL import Image, ImageFont, ImageDraw
from PIL.ExifTags import TAGS
# this is important when deploying to headless server environment (non-GUI)
###################################################
import matplotlib
# force headless backend, or set 'backend' to 'Agg'
# in your ~/.matplotlib/matplotlibrc
matplotlib.use('Agg')
import matplotlib.pyplot
# force non-interactive mode, or set 'interactive' to False
# in your ~/.matplotlib/matplotlibrc
from matplotlib.pyplot import imsave
matplotlib.pyplot.ioff()
###################################################
import cntk
from cntk import input_variable, Axis
from utils.nms.nms_wrapper import apply_nms_to_single_image_results
from cntk_helpers import regress_rois
import cv2 # pip install opencv-python
available_font = "arial.ttf"
try:
dummy = ImageFont.truetype(available_font, 16)
except:
available_font = "FreeMono.ttf"
####################################
# Visualize results
####################################
def visualizeResultsFaster(imgPath, roiLabels, roiScores, roiRelCoords, padWidth, padHeight, classes,
nmsKeepIndices = None, boDrawNegativeRois = True, decisionThreshold = 0.0):
# read and resize image
imgWidth, imgHeight = imWidthHeight(imgPath)
scale = 800.0 / max(imgWidth, imgHeight)
imgHeight = int(imgHeight * scale)
imgWidth = int(imgWidth * scale)
if imgWidth > imgHeight:
h_border = 0
v_border = int((imgWidth - imgHeight)/2)
else:
h_border = int((imgHeight - imgWidth)/2)
v_border = 0
PAD_COLOR = [103, 116, 123] # [114, 114, 114]
cv_img = cv2.imread(imgPath)
rgb_img = cv2.cvtColor(cv_img,cv2.COLOR_BGR2RGB)
resized = cv2.resize(rgb_img, (imgWidth, imgHeight), interpolation=cv2.INTER_NEAREST)
imgDebug = cv2.copyMakeBorder(resized,v_border,v_border,h_border,h_border,cv2.BORDER_CONSTANT,value=PAD_COLOR)
rect_scale = 800 / padWidth
assert(len(roiLabels) == len(roiRelCoords))
if roiScores:
assert(len(roiLabels) == len(roiScores))
minScore = min(roiScores)
print("roiScores min: {}, max: {}, threshold: {}".format(minScore, max(roiScores), decisionThreshold))
if minScore > decisionThreshold:
decisionThreshold = minScore * 0.5
print("reset decision threshold to: {}".format(decisionThreshold))
# draw multiple times to avoid occlusions
for iter in range(0,3):
for roiIndex in range(len(roiRelCoords)):
label = roiLabels[roiIndex]
if roiScores:
score = roiScores[roiIndex]
if decisionThreshold and score < decisionThreshold:
label = 0
# init drawing parameters
thickness = 1
if label == 0:
color = (255, 0, 0)
else:
color = getColorsPalette()[label]
rect = [(rect_scale * i) for i in roiRelCoords[roiIndex]]
rect[0] = int(max(0, min(padWidth, rect[0])))
rect[1] = int(max(0, min(padHeight, rect[1])))
rect[2] = int(max(0, min(padWidth, rect[2])))
rect[3] = int(max(0, min(padHeight, rect[3])))
# draw in higher iterations only the detections
if iter == 0 and boDrawNegativeRois:
drawRectangles(imgDebug, [rect], color=color, thickness=thickness)
elif iter==1 and label > 0:
if not nmsKeepIndices or (roiIndex in nmsKeepIndices):
thickness = 4
drawRectangles(imgDebug, [rect], color=color, thickness=thickness)
elif iter == 2 and label > 0:
if not nmsKeepIndices or (roiIndex in nmsKeepIndices):
font = ImageFont.truetype(available_font, 18)
text = classes[label]
if roiScores:
text += "(" + str(round(score, 2)) + ")"
imgDebug = drawText(imgDebug, (rect[0],rect[1]), text, color = (255,255,255), font = font, colorBackground=color)
return imgDebug
def load_resize_and_pad(image_path, width, height, pad_value=114):
if "@" in image_path:
print("WARNING: zipped image archives are not supported for visualizing results.")
exit(0)
img = cv2.imread(image_path)
img_width = len(img[0])
img_height = len(img)
scale_w = img_width > img_height
target_w = width
target_h = height
if scale_w:
target_h = int(np.round(img_height * float(width) / float(img_width)))
else:
target_w = int(np.round(img_width * float(height) / float(img_height)))
resized = cv2.resize(img, (target_w, target_h), 0, 0, interpolation=cv2.INTER_NEAREST)
top = int(max(0, np.round((height - target_h) / 2)))
left = int(max(0, np.round((width - target_w) / 2)))
bottom = height - top - target_h
right = width - left - target_w
resized_with_pad = cv2.copyMakeBorder(resized, top, bottom, left, right,
cv2.BORDER_CONSTANT, value=[pad_value, pad_value, pad_value])
# transpose(2,0,1) converts the image to the HWC format which CNTK accepts
model_arg_rep = np.ascontiguousarray(np.array(resized_with_pad, dtype=np.float32).transpose(2, 0, 1))
dims = (width, height, target_w, target_h, img_width, img_height)
return resized_with_pad, model_arg_rep, dims
# Tests a Faster R-CNN model and plots images with detected boxes
def eval_and_plot_faster_rcnn(eval_model, num_images_to_plot, test_map_file, img_shape,
results_base_path, feature_node_name, classes,
drawUnregressedRois=False, drawNegativeRois=False,
nmsThreshold=0.5, nmsConfThreshold=0.0, bgrPlotThreshold = 0.8):
# get image paths
with open(test_map_file) as f:
content = f.readlines()
img_base_path = os.path.dirname(os.path.abspath(test_map_file))
img_file_names = [os.path.join(img_base_path, x.split('\t')[1]) for x in content]
# prepare model
image_input = input_variable(img_shape, dynamic_axes=[Axis.default_batch_axis()], name=feature_node_name)
dims_input = input_variable((1,6), dynamic_axes=[Axis.default_batch_axis()], name='dims_input')
frcn_eval = eval_model(image_input, dims_input)
#dims_input_const = cntk.constant([image_width, image_height, image_width, image_height, image_width, image_height], (1, 6))
print("Plotting results from Faster R-CNN model for %s images." % num_images_to_plot)
for i in range(0, num_images_to_plot):
imgPath = img_file_names[i]
# evaluate single image
_, cntk_img_input, dims = load_resize_and_pad(imgPath, img_shape[2], img_shape[1])
dims_input = np.array(dims, dtype=np.float32)
dims_input.shape = (1,) + dims_input.shape
output = frcn_eval.eval({frcn_eval.arguments[0]: [cntk_img_input], frcn_eval.arguments[1]: dims_input})
out_dict = dict([(k.name, k) for k in output])
out_cls_pred = output[out_dict['cls_pred']][0]
out_rpn_rois = output[out_dict['rpn_rois']][0]
out_bbox_regr = output[out_dict['bbox_regr']][0]
labels = out_cls_pred.argmax(axis=1)
scores = out_cls_pred.max(axis=1).tolist()
if drawUnregressedRois:
# plot results without final regression
imgDebug = visualizeResultsFaster(imgPath, labels, scores, out_rpn_rois, img_shape[2], img_shape[1],
classes, nmsKeepIndices=None, boDrawNegativeRois=drawNegativeRois,
decisionThreshold=bgrPlotThreshold)
imsave("{}/{}_{}".format(results_base_path, i, os.path.basename(imgPath)), imgDebug)
# apply regression and nms to bbox coordinates
regressed_rois = regress_rois(out_rpn_rois, out_bbox_regr, labels, dims)
nmsKeepIndices = apply_nms_to_single_image_results(regressed_rois, labels, scores,
nms_threshold=nmsThreshold,
conf_threshold=nmsConfThreshold)
img = visualizeResultsFaster(imgPath, labels, scores, regressed_rois, img_shape[2], img_shape[1],
classes, nmsKeepIndices=nmsKeepIndices,
boDrawNegativeRois=drawNegativeRois,
decisionThreshold=bgrPlotThreshold)
imsave("{}/{}_regr_{}".format(results_base_path, i, os.path.basename(imgPath)), img)
####################################
# helper library
####################################
def imread(imgPath, boThrowErrorIfExifRotationTagSet = True):
if not os.path.exists(imgPath):
print("ERROR: image path does not exist.")
error
rotation = rotationFromExifTag(imgPath)
if boThrowErrorIfExifRotationTagSet and rotation != 0:
print ("Error: exif roation tag set, image needs to be rotated by %d degrees." % rotation)
img = cv2.imread(imgPath)
if img is None:
print ("ERROR: cannot load image " + imgPath)
error
if rotation != 0:
img = imrotate(img, -90).copy() # got this error occassionally without copy "TypeError: Layout of the output array img is incompatible with cv::Mat"
return img
def rotationFromExifTag(imgPath):
TAGSinverted = {v: k for k, v in TAGS.items()}
orientationExifId = TAGSinverted['Orientation']
try:
imageExifTags = Image.open(imgPath)._getexif()
except:
imageExifTags = None
# rotate the image if orientation exif tag is present
rotation = 0
if imageExifTags != None and orientationExifId != None and orientationExifId in imageExifTags:
orientation = imageExifTags[orientationExifId]
# print ("orientation = " + str(imageExifTags[orientationExifId]))
if orientation == 1 or orientation == 0:
rotation = 0 # no need to do anything
elif orientation == 6:
rotation = -90
elif orientation == 8:
rotation = 90
else:
print ("ERROR: orientation = " + str(orientation) + " not_supported!")
error
return rotation
def imwrite(img, imgPath):
cv2.imwrite(imgPath, img)
def imresize(img, scale, interpolation = cv2.INTER_LINEAR):
return cv2.resize(img, (0,0), fx=scale, fy=scale, interpolation=interpolation)
def imresizeMaxDim(img, maxDim, boUpscale = False, interpolation = cv2.INTER_LINEAR):
scale = 1.0 * maxDim / max(img.shape[:2])
if scale < 1 or boUpscale:
img = imresize(img, scale, interpolation)
else:
scale = 1.0
return img, scale
def imWidth(input):
return imWidthHeight(input)[0]
def imHeight(input):
return imWidthHeight(input)[1]
def imWidthHeight(input):
width, height = Image.open(input).size #this does not load the full image
return width,height
def imArrayWidth(input):
return imArrayWidthHeight(input)[0]
def imArrayHeight(input):
return imArrayWidthHeight(input)[1]
def imArrayWidthHeight(input):
width = input.shape[1]
height = input.shape[0]
return width,height
def imshow(img, waitDuration=0, maxDim = None, windowName = 'img'):
if isinstance(img, str): #test if 'img' is a string
img = cv2.imread(img)
if maxDim is not None:
scaleVal = 1.0 * maxDim / max(img.shape[:2])
if scaleVal < 1:
img = imresize(img, scaleVal)
cv2.imshow(windowName, img)
cv2.waitKey(waitDuration)
def drawRectangles(img, rects, color = (0, 255, 0), thickness = 2):
for rect in rects:
pt1 = tuple(ToIntegers(rect[0:2]))
pt2 = tuple(ToIntegers(rect[2:]))
try:
cv2.rectangle(img, pt1, pt2, color, thickness)
except:
import pdb; pdb.set_trace()
print("Unexpected error:", sys.exc_info()[0])
def drawCrossbar(img, pt):
(x,y) = pt
cv2.rectangle(img, (0, y), (x, y), (255, 255, 0), 1)
cv2.rectangle(img, (x, 0), (x, y), (255, 255, 0), 1)
cv2.rectangle(img, (img.shape[1],y), (x, y), (255, 255, 0), 1)
cv2.rectangle(img, (x, img.shape[0]), (x, y), (255, 255, 0), 1)
def ptClip(pt, maxWidth, maxHeight):
pt = list(pt)
pt[0] = max(pt[0], 0)
pt[1] = max(pt[1], 0)
pt[0] = min(pt[0], maxWidth)
pt[1] = min(pt[1], maxHeight)
return pt
def drawText(img, pt, text, textWidth=None, color = (255,255,255), colorBackground = None, font = ImageFont.truetype(available_font, 16)):
pilImg = imconvertCv2Pil(img)
pilImg = pilDrawText(pilImg, pt, text, textWidth, color, colorBackground, font)
return imconvertPil2Cv(pilImg)
def pilDrawText(pilImg, pt, text, textWidth=None, color = (255,255,255), colorBackground = None, font = ImageFont.truetype(available_font, 16)):
textY = pt[1]
draw = ImageDraw.Draw(pilImg)
if textWidth == None:
lines = [text]
else:
lines = textwrap.wrap(text, width=textWidth)
for line in lines:
width, height = font.getsize(line)
if colorBackground != None:
draw.rectangle((pt[0], pt[1], pt[0] + width, pt[1] + height), fill=tuple(colorBackground[::-1]))
draw.text(pt, line, fill = tuple(color), font = font)
textY += height
return pilImg
def getColorsPalette():
colors = [[255,0,0], [0,255,0], [0,0,255], [255,255,0], [255,0,255]]
for i in range(5):
for dim in range(0,3):
for s in (0.25, 0.5, 0.75):
if colors[i][dim] != 0:
newColor = copy.deepcopy(colors[i])
newColor[dim] = int(round(newColor[dim] * s))
colors.append(newColor)
return colors
def imconvertPil2Cv(pilImg):
rgb = pilImg.convert('RGB')
return np.array(rgb).copy()[:, :, ::-1]
def imconvertCv2Pil(img):
cv2_im = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
return Image.fromarray(cv2_im)
def ToIntegers(list1D):
return [int(float(x)) for x in list1D]
def getDictionary(keys, values, boConvertValueToInt = True):
dictionary = {}
for key,value in zip(keys, values):
if (boConvertValueToInt):
value = int(value)
dictionary[key] = value
return dictionary
class Bbox:
MAX_VALID_DIM = 100000
left = top = right = bottom = None
def __init__(self, left, top, right, bottom):
self.left = int(round(float(left)))
self.top = int(round(float(top)))
self.right = int(round(float(right)))
self.bottom = int(round(float(bottom)))
self.standardize()
def __str__(self):
return ("Bbox object: left = {0}, top = {1}, right = {2}, bottom = {3}".format(self.left, self.top, self.right, self.bottom))
def __repr__(self):
return str(self)
def rect(self):
return [self.left, self.top, self.right, self.bottom]
def max(self):
return max([self.left, self.top, self.right, self.bottom])
def min(self):
return min([self.left, self.top, self.right, self.bottom])
def width(self):
width = self.right - self.left + 1
assert(width>=0)
return width
def height(self):
height = self.bottom - self.top + 1
assert(height>=0)
return height
def surfaceArea(self):
return self.width() * self.height()