-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathMaximum_Sum_of_3_Non-Overlapping_Subarrays.cpp
117 lines (104 loc) · 3.46 KB
/
Maximum_Sum_of_3_Non-Overlapping_Subarrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
int n = (int)nums.size();
vector<int> prefixIndxDp(n); // prefixIndxDp[i] = starting index of subarray of size k with maximum sum within [0...i]
vector<int> prefixSumDp(n, 0); // prefixSumDp[i] = maximum sum of subarray of size k within [0...i]
int currSum = 0;
for(int i = 0; i < k; i++) {
currSum += nums[i];
}
int sum = currSum;
prefixSumDp[k - 1] = currSum;
prefixIndxDp[k - 1] = 0;
for(int i = k; i < n; i++) {
currSum -= nums[i - k];
currSum += nums[i];
if(currSum > sum) {
sum = currSum;
prefixIndxDp[i] = i - k + 1;
prefixSumDp[i] = currSum;
} else {
prefixSumDp[i] = prefixSumDp[i - 1];
prefixIndxDp[i] = prefixIndxDp[i - 1];
}
}
vector<int> suffixIndxDp(n);
vector<int> suffixSumDp(n, 0);
currSum = 0;
for(int i = n - 1; i >= n - k; i--) {
currSum += nums[i];
}
sum = currSum;
suffixSumDp[n - k] = currSum;
suffixIndxDp[n - k] = n - k;
for(int i = n - k - 1; i >= 0; i--) {
currSum -= nums[i + k];
currSum += nums[i];
if(currSum > sum) {
sum = currSum;
suffixIndxDp[i] = i;
suffixSumDp[i] = currSum;
} else {
suffixSumDp[i] = suffixSumDp[i + 1];
suffixIndxDp[i] = suffixIndxDp[i + 1];
}
}
vector<int> result;
int midSum = 0;
for(int i = k; i < k + k; i++) {
midSum += nums[i];
}
int maxSum = 0;
for(int i = k; i < n - k - k + 1; i++) {
if(prefixSumDp[i - 1] + midSum + suffixSumDp[i + k] > maxSum) {
maxSum = prefixSumDp[i - 1] + midSum + suffixSumDp[i + k];
result = vector<int>{prefixIndxDp[i - 1], i, suffixIndxDp[i + k]};
}
midSum -= nums[i];
midSum += nums[i + k];
}
return result;
}
};
// another approach (will work for k > 3)
class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
int n = nums.size();
vector<int> sum(n + 2, 0);
for (int i = n - 1; i >= 0; i--) {
sum[i] = nums[i] + sum[i + 1];
}
for (int i = 0; i < n; i++) {
if (i + k <= n) sum[i] -= sum[i + k];
else sum[i] = INT_MIN;
}
vector<vector<int>> dp(n + 2, vector<int> (4, -2E9));
for (int i = 0; i <= n; i++) {
dp[i][0] = 0;
}
for (int j = 1; j <= 3; j++) {
for (int i = n - 1; i >= 0; i--) {
int tmp = sum[i];
if (j - 1) {
if (i + k <= n) tmp += dp[i + k][j - 1];
else tmp = INT_MIN;
}
dp[i][j] = max(dp[i + 1][j], tmp);
}
}
vector<int> ans;
int indx = 3;
int best = dp[0][3];
for (int i = 0; i < n and indx > 0; i++) {
if (dp[i][indx] == best && dp[i][indx] - sum[i] == dp[i + k][indx - 1]) {
best -= sum[i];
ans.emplace_back(i);
i = i + k - 1;
indx--;
}
}
return ans;
}
};