forked from MG2033/ShuffleNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
summarizer.py
45 lines (40 loc) · 1.83 KB
/
summarizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import tensorflow as tf
class Summarizer:
"""The class responsible for Tensorboard summaries such as loss, and classification accuracy"""
def __init__(self, sess, summary_dir):
# Summaries
self.sess = sess
self.scalar_summary_tags = ['loss', 'acc', 'test-loss', 'test-acc']
self.summary_tags = []
self.summary_placeholders = {}
self.summary_ops = {}
self.summary_writer = tf.summary.FileWriter(summary_dir, self.sess.graph)
self.__init_summaries()
############################################################################################################
# Summaries methods
def __init_summaries(self):
"""
Create the summary part of the graph
:return:
"""
with tf.variable_scope('train-summary-per-epoch'):
for tag in self.scalar_summary_tags:
self.summary_tags += tag
self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag)
self.summary_ops[tag] = tf.summary.scalar(tag, self.summary_placeholders[tag])
def add_summary(self, step, summaries_dict=None, summaries_merged=None):
"""
Add the summaries to tensorboard
:param step:
:param summaries_dict:
:param summaries_merged:
:return:
"""
if summaries_dict is not None:
summary_list = self.sess.run([self.summary_ops[tag] for tag in summaries_dict.keys()],
{self.summary_placeholders[tag]: value for tag, value in
summaries_dict.items()})
for summary in summary_list:
self.summary_writer.add_summary(summary, step)
if summaries_merged is not None:
self.summary_writer.add_summary(summaries_merged, step)