forked from DLR-RM/stable-baselines3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffers.py
1012 lines (872 loc) · 41.9 KB
/
buffers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import warnings
from abc import ABC, abstractmethod
from typing import Any, Dict, Generator, List, Optional, Union
import numpy as np
import torch as th
from gymnasium import spaces
from torch_geometric.data import Data, Batch
from stable_baselines3.common.preprocessing import get_action_dim, get_obs_shape
from stable_baselines3.common.type_aliases import (
DictReplayBufferSamples,
DictRolloutBufferSamples,
ReplayBufferSamples,
RolloutBufferSamples,
GraphRolloutBufferSamples,
)
from stable_baselines3.common.utils import get_device
from stable_baselines3.common.vec_env.util import dict_to_obs, graph_copy_obs_dict
from stable_baselines3.common.vec_env import VecNormalize
try:
# Check memory used by replay buffer when possible
import psutil
except ImportError:
psutil = None
class BaseBuffer(ABC):
"""
Base class that represent a buffer (rollout or replay)
:param buffer_size: Max number of element in the buffer
:param observation_space: Observation space
:param action_space: Action space
:param device: PyTorch device
to which the values will be converted
:param n_envs: Number of parallel environments
"""
def __init__(
self,
buffer_size: int,
observation_space: spaces.Space,
action_space: spaces.Space,
device: Union[th.device, str] = "auto",
n_envs: int = 1,
):
super().__init__()
self.buffer_size = buffer_size
self.observation_space = observation_space
self.action_space = action_space
self.obs_shape = get_obs_shape(observation_space)
self.action_dim = get_action_dim(action_space)
self.pos = 0
self.full = False
self.device = get_device(device)
self.n_envs = n_envs
@staticmethod
def swap_and_flatten(arr: np.ndarray) -> np.ndarray:
"""
Swap and then flatten axes 0 (buffer_size) and 1 (n_envs)
to convert shape from [n_steps, n_envs, ...] (when ... is the shape of the features)
to [n_steps * n_envs, ...] (which maintain the order)
:param arr:
:return:
"""
shape = arr.shape
if len(shape) < 3:
shape = (*shape, 1)
return arr.swapaxes(0, 1).reshape(shape[0] * shape[1], *shape[2:])
def size(self) -> int:
"""
:return: The current size of the buffer
"""
if self.full:
return self.buffer_size
return self.pos
def add(self, *args, **kwargs) -> None:
"""
Add elements to the buffer.
"""
raise NotImplementedError()
def extend(self, *args, **kwargs) -> None:
"""
Add a new batch of transitions to the buffer
"""
# Do a for loop along the batch axis
for data in zip(*args):
self.add(*data)
def reset(self) -> None:
"""
Reset the buffer.
"""
self.pos = 0
self.full = False
def sample(self, batch_size: int, env: Optional[VecNormalize] = None):
"""
:param batch_size: Number of element to sample
:param env: associated gym VecEnv
to normalize the observations/rewards when sampling
:return:
"""
upper_bound = self.buffer_size if self.full else self.pos
batch_inds = np.random.randint(0, upper_bound, size=batch_size)
return self._get_samples(batch_inds, env=env)
@abstractmethod
def _get_samples(
self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None
) -> Union[ReplayBufferSamples, RolloutBufferSamples]:
"""
:param batch_inds:
:param env:
:return:
"""
raise NotImplementedError()
def to_torch(self, array: np.ndarray, copy: bool = True) -> th.Tensor:
"""
Convert a numpy array to a PyTorch tensor.
Note: it copies the data by default
:param array:
:param copy: Whether to copy or not the data (may be useful to avoid changing things
by reference). This argument is inoperative if the device is not the CPU.
:return:
"""
if copy:
return th.tensor(array, device=self.device)
return th.as_tensor(array, device=self.device)
@staticmethod
def _normalize_obs(
obs: Union[np.ndarray, Dict[str, np.ndarray]],
env: Optional[VecNormalize] = None,
) -> Union[np.ndarray, Dict[str, np.ndarray]]:
if env is not None:
return env.normalize_obs(obs)
return obs
@staticmethod
def _normalize_reward(reward: np.ndarray, env: Optional[VecNormalize] = None) -> np.ndarray:
if env is not None:
return env.normalize_reward(reward).astype(np.float32)
return reward
class ReplayBuffer(BaseBuffer):
"""
Replay buffer used in off-policy algorithms like SAC/TD3.
:param buffer_size: Max number of element in the buffer
:param observation_space: Observation space
:param action_space: Action space
:param device: PyTorch device
:param n_envs: Number of parallel environments
:param optimize_memory_usage: Enable a memory efficient variant
of the replay buffer which reduces by almost a factor two the memory used,
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274
Cannot be used in combination with handle_timeout_termination.
:param handle_timeout_termination: Handle timeout termination (due to timelimit)
separately and treat the task as infinite horizon task.
https://github.com/DLR-RM/stable-baselines3/issues/284
"""
def __init__(
self,
buffer_size: int,
observation_space: spaces.Space,
action_space: spaces.Space,
device: Union[th.device, str] = "auto",
n_envs: int = 1,
optimize_memory_usage: bool = False,
handle_timeout_termination: bool = True,
):
super().__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs)
# Adjust buffer size
self.buffer_size = max(buffer_size // n_envs, 1)
# Check that the replay buffer can fit into the memory
if psutil is not None:
mem_available = psutil.virtual_memory().available
# there is a bug if both optimize_memory_usage and handle_timeout_termination are true
# see https://github.com/DLR-RM/stable-baselines3/issues/934
if optimize_memory_usage and handle_timeout_termination:
raise ValueError(
"ReplayBuffer does not support optimize_memory_usage = True "
"and handle_timeout_termination = True simultaneously."
)
self.optimize_memory_usage = optimize_memory_usage
self.observations = np.zeros((self.buffer_size, self.n_envs, *self.obs_shape), dtype=observation_space.dtype)
if optimize_memory_usage:
# `observations` contains also the next observation
self.next_observations = None
else:
self.next_observations = np.zeros((self.buffer_size, self.n_envs, *self.obs_shape), dtype=observation_space.dtype)
self.actions = np.zeros((self.buffer_size, self.n_envs, self.action_dim), dtype=action_space.dtype)
self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.dones = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
# Handle timeouts termination properly if needed
# see https://github.com/DLR-RM/stable-baselines3/issues/284
self.handle_timeout_termination = handle_timeout_termination
self.timeouts = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
if psutil is not None:
total_memory_usage = self.observations.nbytes + self.actions.nbytes + self.rewards.nbytes + self.dones.nbytes
if self.next_observations is not None:
total_memory_usage += self.next_observations.nbytes
if total_memory_usage > mem_available:
# Convert to GB
total_memory_usage /= 1e9
mem_available /= 1e9
warnings.warn(
"This system does not have apparently enough memory to store the complete "
f"replay buffer {total_memory_usage:.2f}GB > {mem_available:.2f}GB"
)
def add(
self,
obs: np.ndarray,
next_obs: np.ndarray,
action: np.ndarray,
reward: np.ndarray,
done: np.ndarray,
infos: List[Dict[str, Any]],
) -> None:
# Reshape needed when using multiple envs with discrete observations
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
if isinstance(self.observation_space, spaces.Discrete):
obs = obs.reshape((self.n_envs, *self.obs_shape))
next_obs = next_obs.reshape((self.n_envs, *self.obs_shape))
# Reshape to handle multi-dim and discrete action spaces, see GH #970 #1392
action = action.reshape((self.n_envs, self.action_dim))
# Copy to avoid modification by reference
self.observations[self.pos] = np.array(obs).copy()
if self.optimize_memory_usage:
self.observations[(self.pos + 1) % self.buffer_size] = np.array(next_obs).copy()
else:
self.next_observations[self.pos] = np.array(next_obs).copy()
self.actions[self.pos] = np.array(action).copy()
self.rewards[self.pos] = np.array(reward).copy()
self.dones[self.pos] = np.array(done).copy()
if self.handle_timeout_termination:
self.timeouts[self.pos] = np.array([info.get("TimeLimit.truncated", False) for info in infos])
self.pos += 1
if self.pos == self.buffer_size:
self.full = True
self.pos = 0
def sample(self, batch_size: int, env: Optional[VecNormalize] = None) -> ReplayBufferSamples:
"""
Sample elements from the replay buffer.
Custom sampling when using memory efficient variant,
as we should not sample the element with index `self.pos`
See https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274
:param batch_size: Number of element to sample
:param env: associated gym VecEnv
to normalize the observations/rewards when sampling
:return:
"""
if not self.optimize_memory_usage:
return super().sample(batch_size=batch_size, env=env)
# Do not sample the element with index `self.pos` as the transitions is invalid
# (we use only one array to store `obs` and `next_obs`)
if self.full:
batch_inds = (np.random.randint(1, self.buffer_size, size=batch_size) + self.pos) % self.buffer_size
else:
batch_inds = np.random.randint(0, self.pos, size=batch_size)
return self._get_samples(batch_inds, env=env)
def _get_samples(self, batch_inds: np.ndarray, env: Optional[VecNormalize] = None) -> ReplayBufferSamples:
# Sample randomly the env idx
env_indices = np.random.randint(0, high=self.n_envs, size=(len(batch_inds),))
if self.optimize_memory_usage:
next_obs = self._normalize_obs(self.observations[(batch_inds + 1) % self.buffer_size, env_indices, :], env)
else:
next_obs = self._normalize_obs(self.next_observations[batch_inds, env_indices, :], env)
data = (
self._normalize_obs(self.observations[batch_inds, env_indices, :], env),
self.actions[batch_inds, env_indices, :],
next_obs,
# Only use dones that are not due to timeouts
# deactivated by default (timeouts is initialized as an array of False)
(self.dones[batch_inds, env_indices] * (1 - self.timeouts[batch_inds, env_indices])).reshape(-1, 1),
self._normalize_reward(self.rewards[batch_inds, env_indices].reshape(-1, 1), env),
)
return ReplayBufferSamples(*tuple(map(self.to_torch, data)))
class RolloutBuffer(BaseBuffer):
"""
Rollout buffer used in on-policy algorithms like A2C/PPO.
It corresponds to ``buffer_size`` transitions collected
using the current policy.
This experience will be discarded after the policy update.
In order to use PPO objective, we also store the current value of each state
and the log probability of each taken action.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.
Hence, it is only involved in policy and value function training but not action selection.
:param buffer_size: Max number of element in the buffer
:param observation_space: Observation space
:param action_space: Action space
:param device: PyTorch device
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
Equivalent to classic advantage when set to 1.
:param gamma: Discount factor
:param n_envs: Number of parallel environments
"""
observations: np.ndarray
actions: np.ndarray
rewards: np.ndarray
advantages: np.ndarray
returns: np.ndarray
episode_starts: np.ndarray
log_probs: np.ndarray
values: np.ndarray
def __init__(
self,
buffer_size: int,
observation_space: spaces.Space,
action_space: spaces.Space,
device: Union[th.device, str] = "auto",
gae_lambda: float = 1,
gamma: float = 0.99,
n_envs: int = 1,
):
super().__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs)
self.gae_lambda = gae_lambda
self.gamma = gamma
self.generator_ready = False
self.reset()
def reset(self) -> None:
self.observations = np.zeros((self.buffer_size, self.n_envs, *self.obs_shape), dtype=np.float32)
self.actions = np.zeros((self.buffer_size, self.n_envs, self.action_dim), dtype=np.float32)
self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.returns = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.episode_starts = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.values = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.log_probs = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.advantages = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.generator_ready = False
super().reset()
def compute_returns_and_advantage(self, last_values: th.Tensor, dones: np.ndarray) -> None:
"""
Post-processing step: compute the lambda-return (TD(lambda) estimate)
and GAE(lambda) advantage.
Uses Generalized Advantage Estimation (https://arxiv.org/abs/1506.02438)
to compute the advantage. To obtain Monte-Carlo advantage estimate (A(s) = R - V(S))
where R is the sum of discounted reward with value bootstrap
(because we don't always have full episode), set ``gae_lambda=1.0`` during initialization.
The TD(lambda) estimator has also two special cases:
- TD(1) is Monte-Carlo estimate (sum of discounted rewards)
- TD(0) is one-step estimate with bootstrapping (r_t + gamma * v(s_{t+1}))
For more information, see discussion in https://github.com/DLR-RM/stable-baselines3/pull/375.
:param last_values: state value estimation for the last step (one for each env)
:param dones: if the last step was a terminal step (one bool for each env).
"""
# Convert to numpy
last_values = last_values.clone().cpu().numpy().flatten()
last_gae_lam = 0
for step in reversed(range(self.buffer_size)):
if step == self.buffer_size - 1:
next_non_terminal = 1.0 - dones
next_values = last_values
else:
next_non_terminal = 1.0 - self.episode_starts[step + 1]
next_values = self.values[step + 1]
delta = self.rewards[step] + self.gamma * next_values * next_non_terminal - self.values[step]
last_gae_lam = delta + self.gamma * self.gae_lambda * next_non_terminal * last_gae_lam
self.advantages[step] = last_gae_lam
# TD(lambda) estimator, see Github PR #375 or "Telescoping in TD(lambda)"
# in David Silver Lecture 4: https://www.youtube.com/watch?v=PnHCvfgC_ZA
self.returns = self.advantages + self.values
def add(
self,
obs: np.ndarray,
action: np.ndarray,
reward: np.ndarray,
episode_start: np.ndarray,
value: th.Tensor,
log_prob: th.Tensor,
) -> None:
"""
:param obs: Observation
:param action: Action
:param reward:
:param episode_start: Start of episode signal.
:param value: estimated value of the current state
following the current policy.
:param log_prob: log probability of the action
following the current policy.
"""
if len(log_prob.shape) == 0:
# Reshape 0-d tensor to avoid error
log_prob = log_prob.reshape(-1, 1)
# Reshape needed when using multiple envs with discrete observations
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
if isinstance(self.observation_space, spaces.Discrete):
obs = obs.reshape((self.n_envs, *self.obs_shape))
# Reshape to handle multi-dim and discrete action spaces, see GH #970 #1392
action = action.reshape((self.n_envs, self.action_dim))
self.observations[self.pos] = np.array(obs).copy()
self.actions[self.pos] = np.array(action).copy()
self.rewards[self.pos] = np.array(reward).copy()
self.episode_starts[self.pos] = np.array(episode_start).copy()
self.values[self.pos] = value.clone().cpu().numpy().flatten()
self.log_probs[self.pos] = log_prob.clone().cpu().numpy()
self.pos += 1
if self.pos == self.buffer_size:
self.full = True
def get(self, batch_size: Optional[int] = None) -> Generator[RolloutBufferSamples, None, None]:
assert self.full, ""
indices = np.random.permutation(self.buffer_size * self.n_envs)
# Prepare the data
if not self.generator_ready:
_tensor_names = [
"observations",
"actions",
"values",
"log_probs",
"advantages",
"returns",
]
for tensor in _tensor_names:
self.__dict__[tensor] = self.swap_and_flatten(self.__dict__[tensor])
self.generator_ready = True
# Return everything, don't create minibatches
if batch_size is None:
batch_size = self.buffer_size * self.n_envs
start_idx = 0
while start_idx < self.buffer_size * self.n_envs:
yield self._get_samples(indices[start_idx : start_idx + batch_size])
start_idx += batch_size
def _get_samples(
self,
batch_inds: np.ndarray,
env: Optional[VecNormalize] = None,
) -> RolloutBufferSamples: # type: ignore[signature-mismatch] #FIXME
data = (
self.observations[batch_inds],
self.actions[batch_inds],
self.values[batch_inds].flatten(),
self.log_probs[batch_inds].flatten(),
self.advantages[batch_inds].flatten(),
self.returns[batch_inds].flatten(),
)
return RolloutBufferSamples(*tuple(map(self.to_torch, data)))
class GraphRolloutBuffer(BaseBuffer):
"""
Rollout buffer used in on-policy algorithms like A2C/PPO.
It corresponds to ``buffer_size`` transitions collected
using the current policy.
This experience will be discarded after the policy update.
In order to use PPO objective, we also store the current value of each state
and the log probability of each taken action.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.
Hence, it is only involved in policy and value function training but not action selection.
:param buffer_size: Max number of element in the buffer
:param observation_space: Observation space
:param action_space: Action space
:param device: PyTorch device
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
Equivalent to classic advantage when set to 1.
:param gamma: Discount factor
:param n_envs: Number of parallel environments
"""
observations: np.ndarray
actions: np.ndarray
rewards: np.ndarray
advantages: np.ndarray
returns: np.ndarray
episode_starts: np.ndarray
log_probs: np.ndarray
values: np.ndarray
def __init__(
self,
buffer_size: int,
observation_space: spaces.Space,
action_space: spaces.Space,
device: Union[th.device, str] = "auto",
gae_lambda: float = 1,
gamma: float = 0.99,
n_envs: int = 1,
):
super().__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs)
assert isinstance(self.observation_space, spaces.Graph), "Graph buffer"
self.gae_lambda = gae_lambda
self.gamma = gamma
self.generator_ready = False
self.observations = {"node": {}, "edge_weight": {}, "edge_index": {}}
self.reset()
def reset(self) -> None:
self.observations = {"node": {}, "edge_weight": {}, "edge_index": {}} # variable size
self.actions = {}
self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.returns = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.episode_starts = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.values = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.log_probs = {}
self.advantages = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.generator_ready = False
super().reset()
def compute_returns_and_advantage(self, last_values: th.Tensor, dones: np.ndarray) -> None:
"""
Post-processing step: compute the lambda-return (TD(lambda) estimate)
and GAE(lambda) advantage.
Uses Generalized Advantage Estimation (https://arxiv.org/abs/1506.02438)
to compute the advantage. To obtain Monte-Carlo advantage estimate (A(s) = R - V(S))
where R is the sum of discounted reward with value bootstrap
(because we don't always have full episode), set ``gae_lambda=1.0`` during initialization.
The TD(lambda) estimator has also two special cases:
- TD(1) is Monte-Carlo estimate (sum of discounted rewards)
- TD(0) is one-step estimate with bootstrapping (r_t + gamma * v(s_{t+1}))
For more information, see discussion in https://github.com/DLR-RM/stable-baselines3/pull/375.
:param last_values: state value estimation for the last step (one for each env)
:param dones: if the last step was a terminal step (one bool for each env).
"""
# Convert to numpy
last_values = last_values.clone().cpu().numpy().flatten()
last_gae_lam = 0
for step in reversed(range(self.buffer_size)):
if step == self.buffer_size - 1:
next_non_terminal = 1.0 - dones
next_values = last_values
else:
next_non_terminal = 1.0 - self.episode_starts[step + 1]
next_values = self.values[step + 1]
delta = self.rewards[step] + self.gamma * next_values * next_non_terminal - self.values[step]
last_gae_lam = delta + self.gamma * self.gae_lambda * next_non_terminal * last_gae_lam
self.advantages[step] = last_gae_lam
# TD(lambda) estimator, see Github PR #375 or "Telescoping in TD(lambda)"
# in David Silver Lecture 4: https://www.youtube.com/watch?v=PnHCvfgC_ZA
self.returns = self.advantages + self.values
def add(
self,
obs: np.ndarray,
action: np.ndarray,
reward: np.ndarray,
episode_start: np.ndarray,
value: th.Tensor,
log_prob: th.Tensor,
) -> None:
"""
:param obs: Observation
:param action: Action -- assumed to be ndarray by clipping
:param reward:
:param episode_start: Start of episode signal.
:param value: estimated value of the current state
following the current policy.
:param log_prob: log probability of the action
following the current policy.
"""
if isinstance(log_prob, List):
if len(log_prob) == 1:
log_prob = log_prob[0].cpu()
else:
raise NotImplementedError
if len(log_prob.shape) == 0:
# Reshape 0-d tensor to avoid error
log_prob = log_prob.reshape(-1, 1)
# Reshape needed when using multiple envs with discrete observations
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
if isinstance(self.observation_space, spaces.Discrete):
obs = obs.reshape((self.n_envs, *self.obs_shape))
# Reshape to handle multi-dim and discrete action spaces, see GH #970 #1392
if isinstance(action, List):
if len(action) == 1:
action = action[0]
else:
# Probably loop trough and add each entry independently into the buffer
raise NotImplementedError
else:
action = action.reshape((self.n_envs, self.action_dim))
assert isinstance(obs, Data)
self.observations["node"][self.pos] = obs.x # should be a pyg Data entry
self.observations["edge_index"][self.pos] = obs.edge_index
self.observations["edge_weight"][self.pos] = obs.w
self.actions[self.pos] = np.array(action).copy()
self.rewards[self.pos] = np.array(reward).copy()
self.episode_starts[self.pos] = np.array(episode_start).copy()
self.values[self.pos] = value.clone().cpu().numpy().flatten()
self.log_probs[self.pos] = log_prob.clone().cpu().numpy()
self.pos += 1
if self.pos == self.buffer_size:
self.full = True
def get(self, batch_size: Optional[int] = None) -> Generator[RolloutBufferSamples, None, None]:
assert self.full, ""
indices = np.random.permutation(self.buffer_size * self.n_envs)
# Prepare the data
if not self.generator_ready:
self.observations = dict_to_obs(self.observation_space, self.observations)
assert all([isinstance(k, int) for k in self.actions.keys()]), f"Action not indexed correctly"
self.actions_flat = np.stack([self.actions[i] for i in range(len(self.actions.keys()))])
self.actions = self.actions_flat
assert all([isinstance(k, int) for k in self.log_probs.keys()]), f"Action not indexed correctly"
self.log_probs_flat = np.stack([self.log_probs[i] for i in range(len(self.log_probs.keys()))])
self.log_probs = self.log_probs_flat
_tensor_names = [
"values",
"advantages",
"returns",
]
for tensor in _tensor_names:
self.__dict__[tensor] = self.swap_and_flatten(self.__dict__[tensor])
self.generator_ready = True
# Return everything, don't create minibatches
if batch_size is None:
batch_size = self.buffer_size * self.n_envs
start_idx = 0
while start_idx < self.buffer_size * self.n_envs:
yield self._get_samples(indices[start_idx : start_idx + batch_size])
start_idx += batch_size
def _get_samples(
self,
batch_inds: np.ndarray,
env: Optional[VecNormalize] = None,
) -> RolloutBufferSamples: # type: ignore[signature-mismatch] #FIXME
data = (
Batch.from_data_list(self.observations[batch_inds]),
self.to_torch(self.actions[batch_inds]),
self.to_torch(self.values[batch_inds].flatten()),
self.to_torch(self.log_probs[batch_inds]),
self.to_torch(self.advantages[batch_inds]),
self.to_torch(self.returns[batch_inds].flatten()),
)
return GraphRolloutBufferSamples(*tuple(data))
class DictReplayBuffer(ReplayBuffer):
"""
Dict Replay buffer used in off-policy algorithms like SAC/TD3.
Extends the ReplayBuffer to use dictionary observations
:param buffer_size: Max number of element in the buffer
:param observation_space: Observation space
:param action_space: Action space
:param device: PyTorch device
:param n_envs: Number of parallel environments
:param optimize_memory_usage: Enable a memory efficient variant
Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)
:param handle_timeout_termination: Handle timeout termination (due to timelimit)
separately and treat the task as infinite horizon task.
https://github.com/DLR-RM/stable-baselines3/issues/284
"""
def __init__(
self,
buffer_size: int,
observation_space: spaces.Space,
action_space: spaces.Space,
device: Union[th.device, str] = "auto",
n_envs: int = 1,
optimize_memory_usage: bool = False,
handle_timeout_termination: bool = True,
):
super(ReplayBuffer, self).__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs)
assert isinstance(self.obs_shape, dict), "DictReplayBuffer must be used with Dict obs space only"
self.buffer_size = max(buffer_size // n_envs, 1)
# Check that the replay buffer can fit into the memory
if psutil is not None:
mem_available = psutil.virtual_memory().available
assert optimize_memory_usage is False, "DictReplayBuffer does not support optimize_memory_usage"
# disabling as this adds quite a bit of complexity
# https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702
self.optimize_memory_usage = optimize_memory_usage
self.observations = {
key: np.zeros((self.buffer_size, self.n_envs, *_obs_shape), dtype=observation_space[key].dtype)
for key, _obs_shape in self.obs_shape.items()
}
self.next_observations = {
key: np.zeros((self.buffer_size, self.n_envs, *_obs_shape), dtype=observation_space[key].dtype)
for key, _obs_shape in self.obs_shape.items()
}
self.actions = np.zeros((self.buffer_size, self.n_envs, self.action_dim), dtype=action_space.dtype)
self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.dones = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
# Handle timeouts termination properly if needed
# see https://github.com/DLR-RM/stable-baselines3/issues/284
self.handle_timeout_termination = handle_timeout_termination
self.timeouts = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
if psutil is not None:
obs_nbytes = 0
for _, obs in self.observations.items():
obs_nbytes += obs.nbytes
total_memory_usage = obs_nbytes + self.actions.nbytes + self.rewards.nbytes + self.dones.nbytes
if self.next_observations is not None:
next_obs_nbytes = 0
for _, obs in self.observations.items():
next_obs_nbytes += obs.nbytes
total_memory_usage += next_obs_nbytes
if total_memory_usage > mem_available:
# Convert to GB
total_memory_usage /= 1e9
mem_available /= 1e9
warnings.warn(
"This system does not have apparently enough memory to store the complete "
f"replay buffer {total_memory_usage:.2f}GB > {mem_available:.2f}GB"
)
def add(
self,
obs: Dict[str, np.ndarray],
next_obs: Dict[str, np.ndarray],
action: np.ndarray,
reward: np.ndarray,
done: np.ndarray,
infos: List[Dict[str, Any]],
) -> None: # pytype: disable=signature-mismatch
# Copy to avoid modification by reference
for key in self.observations.keys():
# Reshape needed when using multiple envs with discrete observations
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
if isinstance(self.observation_space.spaces[key], spaces.Discrete):
obs[key] = obs[key].reshape((self.n_envs,) + self.obs_shape[key])
self.observations[key][self.pos] = np.array(obs[key])
for key in self.next_observations.keys():
if isinstance(self.observation_space.spaces[key], spaces.Discrete):
next_obs[key] = next_obs[key].reshape((self.n_envs,) + self.obs_shape[key])
self.next_observations[key][self.pos] = np.array(next_obs[key]).copy()
# Reshape to handle multi-dim and discrete action spaces, see GH #970 #1392
action = action.reshape((self.n_envs, self.action_dim))
self.actions[self.pos] = np.array(action).copy()
self.rewards[self.pos] = np.array(reward).copy()
self.dones[self.pos] = np.array(done).copy()
if self.handle_timeout_termination:
self.timeouts[self.pos] = np.array([info.get("TimeLimit.truncated", False) for info in infos])
self.pos += 1
if self.pos == self.buffer_size:
self.full = True
self.pos = 0
def sample(
self,
batch_size: int,
env: Optional[VecNormalize] = None,
) -> DictReplayBufferSamples: # type: ignore[signature-mismatch] #FIXME:
"""
Sample elements from the replay buffer.
:param batch_size: Number of element to sample
:param env: associated gym VecEnv
to normalize the observations/rewards when sampling
:return:
"""
return super(ReplayBuffer, self).sample(batch_size=batch_size, env=env)
def _get_samples(
self,
batch_inds: np.ndarray,
env: Optional[VecNormalize] = None,
) -> DictReplayBufferSamples: # type: ignore[signature-mismatch] #FIXME:
# Sample randomly the env idx
env_indices = np.random.randint(0, high=self.n_envs, size=(len(batch_inds),))
# Normalize if needed and remove extra dimension (we are using only one env for now)
obs_ = self._normalize_obs({key: obs[batch_inds, env_indices, :] for key, obs in self.observations.items()}, env)
next_obs_ = self._normalize_obs(
{key: obs[batch_inds, env_indices, :] for key, obs in self.next_observations.items()}, env
)
# Convert to torch tensor
observations = {key: self.to_torch(obs) for key, obs in obs_.items()}
next_observations = {key: self.to_torch(obs) for key, obs in next_obs_.items()}
return DictReplayBufferSamples(
observations=observations,
actions=self.to_torch(self.actions[batch_inds, env_indices]),
next_observations=next_observations,
# Only use dones that are not due to timeouts
# deactivated by default (timeouts is initialized as an array of False)
dones=self.to_torch(self.dones[batch_inds, env_indices] * (1 - self.timeouts[batch_inds, env_indices])).reshape(
-1, 1
),
rewards=self.to_torch(self._normalize_reward(self.rewards[batch_inds, env_indices].reshape(-1, 1), env)),
)
class DictRolloutBuffer(RolloutBuffer):
"""
Dict Rollout buffer used in on-policy algorithms like A2C/PPO.
Extends the RolloutBuffer to use dictionary observations
It corresponds to ``buffer_size`` transitions collected
using the current policy.
This experience will be discarded after the policy update.
In order to use PPO objective, we also store the current value of each state
and the log probability of each taken action.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.
Hence, it is only involved in policy and value function training but not action selection.
:param buffer_size: Max number of element in the buffer
:param observation_space: Observation space
:param action_space: Action space
:param device: PyTorch device
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
Equivalent to Monte-Carlo advantage estimate when set to 1.
:param gamma: Discount factor
:param n_envs: Number of parallel environments
"""
def __init__(
self,
buffer_size: int,
observation_space: spaces.Space,
action_space: spaces.Space,
device: Union[th.device, str] = "auto",
gae_lambda: float = 1,
gamma: float = 0.99,
n_envs: int = 1,
):
super(RolloutBuffer, self).__init__(buffer_size, observation_space, action_space, device, n_envs=n_envs)
assert isinstance(self.obs_shape, dict), "DictRolloutBuffer must be used with Dict obs space only"
self.gae_lambda = gae_lambda
self.gamma = gamma
self.observations, self.actions, self.rewards, self.advantages = None, None, None, None
self.returns, self.episode_starts, self.values, self.log_probs = None, None, None, None
self.generator_ready = False
self.reset()
def reset(self) -> None:
assert isinstance(self.obs_shape, dict), "DictRolloutBuffer must be used with Dict obs space only"
self.observations = {}
for key, obs_input_shape in self.obs_shape.items():
self.observations[key] = np.zeros((self.buffer_size, self.n_envs, *obs_input_shape), dtype=np.float32)
self.actions = np.zeros((self.buffer_size, self.n_envs, self.action_dim), dtype=np.float32)
self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.returns = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.episode_starts = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.values = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.log_probs = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.advantages = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
self.generator_ready = False
super(RolloutBuffer, self).reset()
def add(
self,
obs: Dict[str, np.ndarray],
action: np.ndarray,
reward: np.ndarray,
episode_start: np.ndarray,
value: th.Tensor,
log_prob: th.Tensor,
) -> None: # pytype: disable=signature-mismatch
"""
:param obs: Observation
:param action: Action
:param reward:
:param episode_start: Start of episode signal.
:param value: estimated value of the current state
following the current policy.
:param log_prob: log probability of the action
following the current policy.
"""
if len(log_prob.shape) == 0:
# Reshape 0-d tensor to avoid error
log_prob = log_prob.reshape(-1, 1)
for key in self.observations.keys():
obs_ = np.array(obs[key]).copy()
# Reshape needed when using multiple envs with discrete observations
# as numpy cannot broadcast (n_discrete,) to (n_discrete, 1)
if isinstance(self.observation_space.spaces[key], spaces.Discrete):
obs_ = obs_.reshape((self.n_envs,) + self.obs_shape[key])
self.observations[key][self.pos] = obs_
# Reshape to handle multi-dim and discrete action spaces, see GH #970 #1392
action = action.reshape((self.n_envs, self.action_dim))
self.actions[self.pos] = np.array(action).copy()
self.rewards[self.pos] = np.array(reward).copy()
self.episode_starts[self.pos] = np.array(episode_start).copy()
self.values[self.pos] = value.clone().cpu().numpy().flatten()
self.log_probs[self.pos] = log_prob.clone().cpu().numpy()
self.pos += 1
if self.pos == self.buffer_size:
self.full = True
def get(
self,
batch_size: Optional[int] = None,
) -> Generator[DictRolloutBufferSamples, None, None]: # type: ignore[signature-mismatch] #FIXME
assert self.full, ""
indices = np.random.permutation(self.buffer_size * self.n_envs)
# Prepare the data
if not self.generator_ready:
for key, obs in self.observations.items():
self.observations[key] = self.swap_and_flatten(obs)
_tensor_names = ["actions", "values", "log_probs", "advantages", "returns"]
for tensor in _tensor_names:
self.__dict__[tensor] = self.swap_and_flatten(self.__dict__[tensor])
self.generator_ready = True
# Return everything, don't create minibatches
if batch_size is None:
batch_size = self.buffer_size * self.n_envs
start_idx = 0
while start_idx < self.buffer_size * self.n_envs:
yield self._get_samples(indices[start_idx : start_idx + batch_size])
start_idx += batch_size
def _get_samples(