-
Notifications
You must be signed in to change notification settings - Fork 14
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Best practice for DiffOpt.jl implementation with Flux (logsumexp) #228
Comments
What is |
function affine_map(nn::ParametrisedConvexApproximator, x::AbstractArray, u::AbstractArray)
@unpack NN, i_max, m = nn
# @unpack NN1, NN2, i_max, m = nn
d = size(x)[2]
X = reshape(NN(x), i_max, m+1, d)
tmp = hcat([(X[:, 1:end-1, i]*u[:, i] .+ X[:, end:end, i]) for i in 1:d]...)
return tmp
end |
According to this answer and #50 , it seems not solvable for now |
You can reformulate a logsumexp as an exponential cone: |
Ah sorry, hadn't seen the second part. #50 should not be a bother, not sure how well it will work but there are no technical limitations anymore |
@matbesancon |
that at least you can try them I think |
@odow And I also checked that I can construct forward function using JuMP
import DiffOpt
import SCS
import ChainRulesCore
function main()
N, d = 5, 10
y = rand(N, d)
# x_star = matrix_relu(y)
# x_star = @run matrix_relu(y)
x_star = logsumexp(y)
end
function matrix_relu(
y::Matrix;
model = Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))
)
layer_size, batch_size = size(y)
empty!(model)
set_silent(model)
@variable(model, x[1:layer_size, 1:batch_size] >= 0)
@objective(model, Min, x[:]'x[:] -2y[:]'x[:])
@bp
optimize!(model)
return value.(x)
end
function logsumexp(
y::Matrix;
model = Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer)),
)
N, d = size(y)
x_star = zeros(N, d)
for j in 1:d
empty!(model)
set_silent(model)
@variable(model, x[1:N])
@variable(model, u[1:N])
@variable(model, t)
@constraint(model, sum(u) <= 1)
@constraint(model, [i=1:N], [u[i], 1, y[i, j]*x[i] - t] in MOI.ExponentialCone())
@objective(model, Min, t)
optimize!(model)
x_star[:, j] = value.(x)
end
x_star
end
function ChainRulesCore.rrule(::typeof(logsumexp), y::Matrix{T}) where T
model = Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))
pv = logsumexp(y, model=model)
function pullback_logsumexp(dl_dx)
x = model[:x]
dl_dy = zeros(T, size(dl_dx))
dl_dq = zeros(T, size(dl_dx))
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x[:], dl_dx[:])
DiffOpt.reverse_differentiate!(model)
obj_exp
error("todo")
end
return pv, pullback_logsumexp
end (Note that I'm working on completing the But I don't actually get how to complete this. I'll take a look at it deeply later EDIT: I was trying to do that but I failed with an error when running the following code.
using JuMP
import DiffOpt
import SCS
import ChainRulesCore
function main()
N, d = 5, 10
y = rand(N, d)
# x_star = matrix_relu(y)
# x_star = @run matrix_relu(y)
x_star = logsumexp(y)
end
function matrix_relu(
y::Matrix;
model = Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))
)
layer_size, batch_size = size(y)
empty!(model)
set_silent(model)
@variable(model, x[1:layer_size, 1:batch_size] >= 0)
@objective(model, Min, x[:]'x[:] -2y[:]'x[:])
@bp
optimize!(model)
return value.(x)
end
function logsumexp(
y::Matrix;
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2]),
)
N, d = size(y)
x_star = zeros(N, d)
for (j, model) in enumerate(models)
empty!(model)
set_silent(model)
@variable(model, x[1:N])
@variable(model, u[1:N])
@variable(model, t)
@constraint(model, sum(u) <= 1)
@constraint(model, [i=1:N], [u[i], 1, y[i, j]*x[i] - t] in MOI.ExponentialCone())
@objective(model, Min, t)
optimize!(model)
x_star[:, j] = value.(x)
end
x_star
end
function ChainRulesCore.rrule(::typeof(logsumexp), y::Matrix{T}) where T
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2])
pv = logsumexp(y, models=models)
function pullback_logsumexp(dl_dx)
for (j, model) in enumerate(models)
x = model[:x]
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x[:], dl_dx[:, j])
DiffOpt.reverse_differentiate!(model)
end
error("todo")
end
return pv, pullback_logsumexp
end
|
Oops. I always get this wrong. The Mosek and MOI conventions for Exponential cone are flipped. Try:
|
@odow using JuMP
import DiffOpt
import SCS
import ChainRulesCore
function main()
N, d = 5, 10
y = rand(N, d)
# x_star = matrix_relu(y)
# x_star = @run matrix_relu(y)
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2])
x_star = logsumexp(y; models=models)
# test
j = 1
model = models[j]
x = model[:x]
dl_dx = rand(size(x)...)
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x[:], dl_dx[:, j])
DiffOpt.reverse_differentiate!(model)
end
# function matrix_relu(
# y::Matrix;
# model = Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))
# )
# layer_size, batch_size = size(y)
# empty!(model)
# set_silent(model)
# @variable(model, x[1:layer_size, 1:batch_size] >= 0)
# @objective(model, Min, x[:]'x[:] -2y[:]'x[:])
# @bp
# optimize!(model)
# return value.(x)
# end
function logsumexp(
y::Matrix;
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2]),
)
N, d = size(y)
x_star = zeros(N, d)
for (j, model) in enumerate(models)
empty!(model)
set_silent(model)
@variable(model, x[1:N])
@variable(model, u[1:N])
@variable(model, t)
@constraint(model, sum(u) <= 1)
@constraint(model, [i=1:N], [y[i, j]*x[i] - t, 1, u[i]] in MOI.ExponentialCone())
@objective(model, Min, t)
optimize!(model)
x_star[:, j] = value.(x)
end
x_star
end
function ChainRulesCore.rrule(::typeof(logsumexp), y::Matrix{T}) where T
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2])
pv = logsumexp(y, models=models)
function pullback_logsumexp(dl_dx)
for (j, model) in enumerate(models)
x = model[:x]
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x[:], dl_dx[:, j])
DiffOpt.reverse_differentiate!(model)
end
error("todo")
end
return pv, pullback_logsumexp
end julia> main()
ERROR: Trying to compute the reverse differentiation on a model with termination status DUAL_INFEASIBLE
Stacktrace:
[1] error(s::String)
@ Base ./error.jl:33
[2] reverse_differentiate!(model::DiffOpt.Optimizer{MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{MathOptInterface.Utilities.CachingOptimizer{SCS.Optimizer, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/moi_wrapper.jl:361
[3] reverse_differentiate!
@ ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:276 [inlined]
[4] reverse_differentiate!(model::MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{DiffOpt.Optimizer{MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{MathOptInterface.Utilities.CachingOptimizer{SCS.Optimizer, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:272
[5] reverse_differentiate!(model::Model)
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:268
[6] main()
@ Main ~/.julia/dev/tmp.jl:20
[7] top-level scope
@ REPL[2]:1 |
It's saying the problem is unbounded. Are you sure you don't mean
What does |
Yeah, that makes sense. I imposed a box constraint: function logsumexp(
y::Matrix;
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2]),
x_min = -10.0,
x_max = 10.0,
)
N, d = size(y)
x_star = zeros(N, d)
for (j, model) in enumerate(models)
empty!(model)
set_silent(model)
@variable(model, x[1:N])
@variable(model, u[1:N])
@variable(model, t)
@constraint(model, sum(u) <= 1.0)
@constraint(model, [i=1:N], [y[i, j]*x[i] - t, 1.0, u[i]] in MOI.ExponentialCone())
@constraint(model, x_min .<= x .<= x_max)
@objective(model, Min, t)
optimize!(model)
x_star[:, j] = value.(x)
end
x_star
end and it gives still an error julia> main()
ERROR: MethodError: no method matching MathOptInterface.ExponentialCone(::Int64)
Closest candidates are:
MathOptInterface.ExponentialCone() at ~/.julia/packages/MathOptInterface/AiEiQ/src/sets.jl:400
Stacktrace:
[1] set_with_dimension(#unused#::Type{MathOptInterface.ExponentialCone}, dim::Int64)
@ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/AiEiQ/src/Utilities/matrix_of_constraints.jl:561
[2] set_from_constants(#unused#::Vector{Float64}, #unused#::Type{MathOptInterface.ExponentialCone}, rows::UnitRange{Int64})
@ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/AiEiQ/src/Utilities/matrix_of_constraints.jl:598
[3] get(model::MathOptInterface.Utilities.MatrixOfConstraints{Float64, MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int64, MathOptInterface.Utilities.OneBasedIndexing}, Vector{Float64}, DiffOpt.ProductOfSets{Float64}}, #unused#::MathOptInterface.ConstraintSet, ci::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone})
@ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/AiEiQ/src/Utilities/matrix_of_constraints.jl:623
[4] get(model::MathOptInterface.Utilities.GenericModel{Float64, MathOptInterface.Utilities.ObjectiveContainer{Float64}, MathOptInterface.Utilities.FreeVariables, MathOptInterface.Utilities.MatrixOfConstraints{Float64, MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int64, MathOptInterface.Utilities.OneBasedIndexing}, Vector{Float64}, DiffOpt.ProductOfSets{Float64}}}, attr::MathOptInterface.ConstraintSet, ci::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone})
@ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/AiEiQ/src/Utilities/model.jl:459
[5] (::DiffOpt.var"#4#5"{Vector{Float64}, MathOptInterface.Utilities.GenericModel{Float64, MathOptInterface.Utilities.ObjectiveContainer{Float64}, MathOptInterface.Utilities.FreeVariables, MathOptInterface.Utilities.MatrixOfConstraints{Float64, MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int64, MathOptInterface.Utilities.OneBasedIndexing}, Vector{Float64}, DiffOpt.ProductOfSets{Float64}}}})(ci::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone}, r::UnitRange{Int64})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:310
[6] _map_rows!(f::DiffOpt.var"#4#5"{Vector{Float64}, MathOptInterface.Utilities.GenericModel{Float64, MathOptInterface.Utilities.ObjectiveContainer{Float64}, MathOptInterface.Utilities.FreeVariables, MathOptInterface.Utilities.MatrixOfConstraints{Float64, MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int64, MathOptInterface.Utilities.OneBasedIndexing}, Vector{Float64}, DiffOpt.ProductOfSets{Float64}}}}, x::Vector{Matrix{Float64}}, model::MathOptInterface.Utilities.GenericModel{Float64, MathOptInterface.Utilities.ObjectiveContainer{Float64}, MathOptInterface.Utilities.FreeVariables, MathOptInterface.Utilities.MatrixOfConstraints{Float64, MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int64, MathOptInterface.Utilities.OneBasedIndexing}, Vector{Float64}, DiffOpt.ProductOfSets{Float64}}}, cones::DiffOpt.ProductOfSets{Float64}, #unused#::Type{MathOptInterface.VectorAffineFunction{Float64}}, #unused#::Type{MathOptInterface.ExponentialCone}, map_mode::DiffOpt.Nested{Matrix{Float64}}, k::Int64)
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:337
[7] map_rows(f::Function, model::MathOptInterface.Utilities.GenericModel{Float64, MathOptInterface.Utilities.ObjectiveContainer{Float64}, MathOptInterface.Utilities.FreeVariables, MathOptInterface.Utilities.MatrixOfConstraints{Float64, MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int64, MathOptInterface.Utilities.OneBasedIndexing}, Vector{Float64}, DiffOpt.ProductOfSets{Float64}}}, cones::DiffOpt.ProductOfSets{Float64}, map_mode::DiffOpt.Nested{Matrix{Float64}})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:366
[8] Dπ
@ ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:308 [inlined]
[9] _gradient_cache(model::DiffOpt.ConicProgram.Model)
@ DiffOpt.ConicProgram ~/.julia/packages/DiffOpt/LLsVt/src/ConicProgram/ConicProgram.jl:158
[10] reverse_differentiate!(model::DiffOpt.ConicProgram.Model)
@ DiffOpt.ConicProgram ~/.julia/packages/DiffOpt/LLsVt/src/ConicProgram/ConicProgram.jl:250
[11] reverse_differentiate!(model::MathOptInterface.Bridges.LazyBridgeOptimizer{DiffOpt.ConicProgram.Model})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:276
[12] reverse_differentiate!(model::DiffOpt.Optimizer{MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{MathOptInterface.Utilities.CachingOptimizer{SCS.Optimizer, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/moi_wrapper.jl:367
[13] reverse_differentiate!
@ ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:276 [inlined]
[14] reverse_differentiate!(model::MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{DiffOpt.Optimizer{MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{MathOptInterface.Utilities.CachingOptimizer{SCS.Optimizer, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:272
[15] reverse_differentiate!(model::Model)
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:268
[16] main()
@ Main ~/.julia/dev/tmp.jl:20
[17] top-level scope
@ REPL[2]:1
|
Ah. I fixed this one recently: jump-dev/MathOptInterface.jl#1941 As a work-around, just add this method to your code: MOI.Utilities.set_with_dimension(::Type{MOI.ExponentialCone}, dim) = MOI.ExponentialCone() |
Dang, it seems to work at least until How lucky I am! You're helping me, who fixed that bug lol |
Sorry but could you help me? using JuMP
import DiffOpt
import SCS
import ChainRulesCore
# workaround to avoid an error: https://github.com/jump-dev/DiffOpt.jl/issues/228#issuecomment-1188512885
MOI.Utilities.set_with_dimension(::Type{MOI.ExponentialCone}, dim) = MOI.ExponentialCone()
function main()
N, d = 5, 10
y = rand(N, d)
# x_star = matrix_relu(y)
# x_star = @run matrix_relu(y)
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2])
x_star = logsumexp(y; models=models)
# test
j = 1
model = models[j]
x = model[:x]
dl_dx = rand(size(x)...)
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x[:], dl_dx[:])
DiffOpt.reverse_differentiate!(model)
c = model[:c]
MOI.get.(model, DiffOpt.ReverseConstraintFunction(), c)
end
# function matrix_relu(
# y::Matrix;
# model = Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))
# )
# layer_size, batch_size = size(y)
# empty!(model)
# set_silent(model)
# @variable(model, x[1:layer_size, 1:batch_size] >= 0)
# @objective(model, Min, x[:]'x[:] -2y[:]'x[:])
# @bp
# optimize!(model)
# return value.(x)
# end
function logsumexp(
y::Matrix;
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2]),
x_min = -1.0,
x_max = 1.0,
)
N, d = size(y)
x_star = zeros(N, d)
for (j, model) in enumerate(models)
empty!(model)
set_silent(model)
@variable(model, x[1:N])
@variable(model, u[1:N])
@variable(model, t)
@constraint(model, sum(u) <= 1.0)
@constraint(model, c[i=1:N], [y[i, j]*x[i] - t, 1.0, u[i]] in MOI.ExponentialCone())
@constraint(model, x_min .<= x .<= x_max)
@objective(model, Min, t)
optimize!(model)
x_star[:, j] = value.(x)
end
x_star
end
function ChainRulesCore.rrule(::typeof(logsumexp), y::Matrix{T}) where T
models = repeat([Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))], size(y)[2])
pv = logsumexp(y, models=models)
function pullback_logsumexp(dl_dx)
for (j, model) in enumerate(models)
x = model[:x]
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x[:], dl_dx[:, j])
DiffOpt.reverse_differentiate!(model)
end
error("todo")
end
return pv, pullback_logsumexp
end julia> main()
ERROR: DimensionMismatch("arrays could not be broadcast to a common size; got a dimension with lengths 3 and 11")
Stacktrace:
[1] _bcs1
@ ./broadcast.jl:516 [inlined]
[2] _bcs
@ ./broadcast.jl:510 [inlined]
[3] broadcast_shape
@ ./broadcast.jl:504 [inlined]
[4] combine_axes
@ ./broadcast.jl:499 [inlined]
[5] instantiate
@ ./broadcast.jl:281 [inlined]
[6] lazy_combination(op::typeof(-), α::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, a::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, β::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, b::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:255
[7] lazy_combination
@ ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:263 [inlined]
[8] lazy_combination(op::typeof(-), a::Vector{Float64}, b::Vector{Float64}, i::UnitRange{Int64}, I::UnitRange{Int64})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:269
[9] _get_dA
@ ~/.julia/packages/DiffOpt/LLsVt/src/ConicProgram/ConicProgram.jl:338 [inlined]
[10] get(model::DiffOpt.ConicProgram.Model, #unused#::DiffOpt.ReverseConstraintFunction, ci::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/diff_opt.jl:277
[11] get(b::MathOptInterface.Bridges.LazyBridgeOptimizer{DiffOpt.ConicProgram.Model}, attr::DiffOpt.ReverseConstraintFunction, ci::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone})
@ MathOptInterface.Bridges ~/.julia/packages/MathOptInterface/AiEiQ/src/Bridges/bridge_optimizer.jl:1391
[12] get(model::DiffOpt.Optimizer{MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{MathOptInterface.Utilities.CachingOptimizer{SCS.Optimizer, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, attr::DiffOpt.ReverseConstraintFunction, ci::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/moi_wrapper.jl:500
[13] get(b::MathOptInterface.Bridges.LazyBridgeOptimizer{DiffOpt.Optimizer{MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{MathOptInterface.Utilities.CachingOptimizer{SCS.Optimizer, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}}, attr::DiffOpt.ReverseConstraintFunction, ci::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone})
@ MathOptInterface.Bridges ~/.julia/packages/MathOptInterface/AiEiQ/src/Bridges/bridge_optimizer.jl:1391
[14] get(model::MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{DiffOpt.Optimizer{MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.Bridges.LazyBridgeOptimizer{MathOptInterface.Utilities.CachingOptimizer{SCS.Optimizer, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}}}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, attr::DiffOpt.ReverseConstraintFunction, index::MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone})
@ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/AiEiQ/src/Utilities/cachingoptimizer.jl:911
[15] get(model::Model, attr::DiffOpt.ReverseConstraintFunction, con_ref::ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone}, VectorShape})
@ DiffOpt ~/.julia/packages/DiffOpt/LLsVt/src/jump_moi_overloads.jl:20
[16] _broadcast_getindex_evalf
@ ./broadcast.jl:670 [inlined]
[17] _broadcast_getindex
@ ./broadcast.jl:643 [inlined]
[18] getindex
@ ./broadcast.jl:597 [inlined]
[19] copy
@ ./broadcast.jl:899 [inlined]
[20] materialize(bc::Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{1}, Nothing, typeof(MathOptInterface.get), Tuple{Base.RefValue{Model}, Base.RefValue{DiffOpt.ReverseConstraintFunction}, Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.ExponentialCone}, VectorShape}}}})
@ Base.Broadcast ./broadcast.jl:860
[21] main()
@ Main ~/.julia/dev/tmp.jl:26
[22] top-level scope
@ REPL[2]:1 |
This is where I'm not sure, sorry. I've never used DiffOpt, or dug into how it works. My guess is that it's still missing some features for ExponentialCone properly, or at least, ExponentialCone hasn't been tested. @matbesancon or @joaquimg are the people who would know. |
Yup, thank you so much @odow for your help! |
@matbesancon is the exponential cone meant to work? #50 is open, and the docs mention only PSD and SOC. |
Hi, developers! Thanks for this promising and potentially useful package.
I'm studying differentiable convex optimisation and trying to implement it to the PLSE, a neural network that I proposed.
I used to use cvxpylayers but I'm sick of the slow speed of Python stuff. So I'm wondering if I can implement this through DiffOpt.jl.
Background
I have a neural network (called PLSE)
f(x, u; \theta)
with two inputsx
(condition) andu
(decision) and the network parametertheta
.f(x, \cdot)
is guaranteed to be convex, and the corresponding convex optimisation is exponential cone program (the original form is log-sum-exp). This is implemented in ParametrisedConvexApproximators.jl.What I'm trying to do
It is pretty simple.
I wanna get the derivative
du*/d\theta
where the optimal decisionu*(x, \theta)
which minimisesf(x, \cdot; \theta)
possibly within a prescribed set (decision space) and the network parameter\theta
.You can find this idea with cvxpylayers here.
Issues with DiffOpt.jl
Before addressing this, I'm not familiar with this package. Please lmk if there are any workarounds that I missed.
So what I tried is following Custom ReLU example. For this, I need to define the objective function.
An example code would be
Note that the output of
plse
is a vector with 1-element.And the following is how to obtain the
plse(x, u)
, which can be found here.And in the
Flux.logsumexp
, I encountered this error:It may be due to the lack of my background knowledge of how to use
JuMP
andDiffOpt
stuff.How can I realise my idea with DiffOpt.jl?
The text was updated successfully, but these errors were encountered: