This repository has been archived by the owner on Oct 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathStandardizeMolecule.py
272 lines (219 loc) · 9.4 KB
/
StandardizeMolecule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from collections import Counter
from multiprocessing import Pool
from rdkit import rdBase, RDLogger
from rdkit.rdBase import BlockLogs
from rdkit.Chem import MolFromSmiles, MolToSmiles, MolToInchi, MolToInchiKey
from rdkit.Chem.MolStandardize import Standardizer
from typing import Union
import fire
import logging
import numpy as np
import pandas as pd
import requests
import tqdm
class StandardizeMolecule:
def __init__(
self,
input: Union[str, pd.DataFrame],
output: str = None,
num_cpu: int = 1,
limit_rows: int = None,
augment: bool = False,
):
"""
Initialize the class.
:param input: Input file name (TSV/TXT/CSV) or a pandas dataframe containing the SMILES
:param output: Output file name (optional)
:param num_cpu: Number of CPUs to use (default: 1)
:param limit_rows: Limit the number of rows to be processed (optional)
:param augment: The output is the input file augmented with the standardized SMILES, InChI, and InChIKey (default: False)
"""
self.input = input
self.output = output
self.num_cpu = num_cpu
self.limit_rows = limit_rows
self.augment = augment
def _standardize_structure(self, smiles):
"""
Standardize the given SMILES using MolVS and RDKit.
:param smiles: Input SMILES from the given structure data file
:return: dataframe: Pandas dataframe containing the original SMILES, standardized SMILES, InChI, and InChIKey
"""
standardizer = Standardizer()
smiles_original = smiles
# Disable RDKit logging
block = BlockLogs()
# Read SMILES and convert it to RDKit mol object
mol = MolFromSmiles(smiles)
# Check if the input SMILES has been converted into a mol object
if mol is None:
logging.error(f"Reading Error, {smiles}")
return pd.DataFrame(
columns=[
"SMILES_original",
"SMILES_standardized",
"InChI_standardized",
"InChIKey_standardized",
]
)
try:
smiles_clean_counter = Counter()
mol_dict = {}
is_finalize = False
for _ in range(5):
# standardize molecules using MolVS and RDKit
mol = standardizer.charge_parent(mol)
mol = standardizer.isotope_parent(mol)
mol = standardizer.stereo_parent(mol)
mol = standardizer.tautomer_parent(mol)
mol = standardizer.standardize(mol)
mol_standardized = mol
# convert mol object back to SMILES
smiles_standardized = MolToSmiles(mol_standardized)
if smiles == smiles_standardized:
is_finalize = True
break
smiles_clean_counter[smiles_standardized] += 1
if smiles_standardized not in mol_dict:
mol_dict[smiles_standardized] = mol_standardized
smiles = smiles_standardized
mol = MolFromSmiles(smiles)
if not is_finalize:
# If the standardization process is not finalized, we choose the most common SMILES from the counter
smiles_standardized = smiles_clean_counter.most_common()[0][0]
# ... and the corresponding mol object
mol_standardized = mol_dict[smiles_standardized]
# Convert the mol object to InChI
inchi_standardized = MolToInchi(mol_standardized)
# Convert the InChI to InChIKey
inchikey_standardized = MolToInchiKey(mol_standardized)
except (ValueError, AttributeError) as e:
smiles_standardized = np.nan
inchi_standardized = np.nan
inchikey_standardized = np.nan
logging.error(f"Standardization error, {smiles}, Error Type: {str(e)}")
del block
# return as a dataframe
return pd.DataFrame(
{
"SMILES_original": [smiles_original],
"SMILES_standardized": [smiles_standardized],
"InChI_standardized": [inchi_standardized],
"InChIKey_standardized": [inchikey_standardized],
}
)
def _run_standardize(self, smiles_list):
"""
Run the standardization process in parallel using multiprocessing.
:param smiles_list: List of SMILES to be standardized
:param num_cpu: Number of CPUs to use
"""
with Pool(processes=self.num_cpu) as pool:
standardized_dfs = list(
tqdm.tqdm(
pool.imap(self._standardize_structure, smiles_list),
total=len(smiles_list),
)
)
return pd.concat(standardized_dfs, ignore_index=True)
def skip_rows_bang(self, file_or_url):
"""
Return the rows that start with a bang.
:param file_or_url: Input file name, either a local file or a URL
"""
# Check if the input is a URL
if file_or_url.startswith("http://") or file_or_url.startswith("https://"):
response = requests.get(file_or_url)
content = response.content.decode("utf-8")
lines = content.splitlines()
elif file_or_url.endswith(".gz"):
import gzip
with gzip.open(file_or_url, "rt") as f:
lines = f.readlines()
else:
with open(file_or_url, "r") as f:
lines = f.readlines()
exclamation_indices = [
index for index, line in enumerate(lines) if line.startswith("!")
]
return exclamation_indices
def _load_input(self):
"""
Read the input and return a pandas dataframe containing the SMILES.
:return: dataframe: Pandas dataframe containing the SMILES
"""
if isinstance(self.input, str):
# read the input file, and figure out if it is a csv or a tsv file
if self.input.endswith((".csv", ".csv.gz")):
sep = ","
elif self.input.endswith((".tsv", ".txt", ".tsv.gz", ".txt.gz")):
sep = "\t"
else:
raise ValueError("Input file must be either a csv or a tsv/txt file.")
self.input = pd.read_csv(
self.input,
sep=sep,
skiprows=self.skip_rows_bang(self.input),
)
elif isinstance(self.input, pd.DataFrame):
pass
else:
raise ValueError("Input must be either a filename or a pandas dataframe.")
# if there are no rows, raise an error
if len(self.input) == 0:
raise ValueError("Input file must contain at least one row.")
# if both SMILES and smiles are present, raise an error
if "SMILES" in self.input.columns and "smiles" in self.input.columns:
raise ValueError("Input file must contain only one column named SMILES.")
# if the columns SMILES or smiles is not present, raise an error
if "SMILES" not in self.input.columns and "smiles" not in self.input.columns:
raise ValueError("Input file must contain a column named SMILES or smiles.")
# if the column SMILES is not present, rename the column smiles to SMILES
if "SMILES" not in self.input.columns:
self.input = self.input.rename(columns={"smiles": "SMILES"})
# if self.limit_rows is not None, limit the number of rows to self.limit_rows
if self.limit_rows is not None:
self.input = self.input.head(self.limit_rows)
# save the self.input to self.input_original
self.input_original = self.input.copy()
# select only the SMILES column
self.input = self.input[["SMILES"]]
# drop missing values
self.input = self.input.dropna()
# drop duplicates
self.input = self.input.drop_duplicates()
def run(self):
"""
Run the standardization process.
"""
self._load_input()
logging.info(f"Number of CPUs: {self.num_cpu}")
standardized_df = self._run_standardize(self.input["SMILES"])
# if self.augment is True, merge the original dataframe with the standardized dataframe
if self.augment:
# if any of these columns are already present in the original dataframe, drop them
new_columns = [
"SMILES_original",
"SMILES_standardized",
"InChI_standardized",
"InChIKey_standardized",
]
for column in new_columns:
if column in self.input_original.columns:
self.input_original = self.input_original.drop(columns=column)
standardized_df = pd.merge(
standardized_df,
self.input_original,
left_on="SMILES_original",
right_on="SMILES",
how="left",
)
standardized_df.drop("SMILES", axis=1, inplace=True)
# if self.output is not None, save the standardized dataframe to a csv file
if self.output is not None:
standardized_df.to_csv(self.output, index=False)
return self.output
else:
return standardized_df
if __name__ == "__main__":
fire.Fire(StandardizeMolecule)