forked from conhua/babybrainguardian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_features.py
67 lines (62 loc) · 2.69 KB
/
generate_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import pickle
from src.encoders.graph_attention import GraphAttnEncoder
from src.trainers.contrastive import ContrastiveTrainer
from src.trainers.moco import MoCo, MoCoTrainer
from src.utils import create_contrastive_config, create_moco_configs
import yaml
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config-file", type=str, default="")
parser.add_argument("--method", type=str, default="contrastive")
parser.add_argument("--model-ckpt", type=str, default="best_ckpt.pt")
parser.add_argument("--save-dir", type=str, default="f")
if __name__ == "__main__":
args = parser.parse_args()
if args.method == "moco":
config = yaml.safe_load(open(args.config_file, "r"))
base_model_config, moco_config, trainer_config = create_moco_configs(config)
encoder_q = GraphAttnEncoder(base_model_config)
encoder_k = GraphAttnEncoder(base_model_config)
moco = MoCo(encoder_q, encoder_k, moco_config)
trainer = MoCoTrainer(moco, trainer_config)
trainer.load_checkpoint(args.model_ckpt)
train_reps = trainer.inference(trainer.train_cls_set)
test_reps = trainer.inference(trainer.test_cls_set)
save_dir = os.path.join(args.save_dir, config["MetaConfig"]["name"])
os.makedirs(save_dir, exist_ok=True)
features = {
"train": {
"features": train_reps,
"labels": trainer.train_cls_set.targets
},
"test": {
"features": test_reps,
"labels": trainer.test_cls_set.targets
}
}
with open(os.path.join(save_dir, "features.pkl"), "wb") as f:
pickle.dump(features, f)
elif args.method == "contrastive":
config = yaml.safe_load(open(args.config_file, "r"))
base_model_config, trainer_config = create_contrastive_config(config)
trainer_config.device = "cuda:1"
encoder = GraphAttnEncoder(base_model_config)
trainer = ContrastiveTrainer(encoder, trainer_config)
trainer.load_checkpoint(args.model_ckpt)
train_reps = trainer.inference(trainer.train_cls_set)
test_reps = trainer.inference(trainer.test_cls_set)
save_dir = os.path.join(args.save_dir, config["MetaConfig"]["name"])
os.makedirs(save_dir, exist_ok=True)
features = {
"train": {
"features": train_reps,
"labels": trainer.train_cls_set.targets
},
"test": {
"features": test_reps,
"labels": trainer.test_cls_set.targets
}
}
with open(os.path.join(save_dir, "features.pkl"), "wb") as f:
pickle.dump(features, f)