@@ -117,9 +117,11 @@ def optimize(self, maxevals=50, model_id=0):
117
117
else :
118
118
client = MlflowClient ()
119
119
n_experiments = len (client .list_experiments ())
120
- client .create_experiment (name = str (n_experiments ))
120
+ experiment_name = 'experiment_' + str (n_experiments )
121
+ client .create_experiment (name = experiment_name )
121
122
experiments = client .list_experiments ()
122
123
with mlflow .start_run (experiment_id = experiments [- 1 ].experiment_id ) as run :
124
+ # with mlflow.start_run() as run:
123
125
model = lgb .LGBMClassifier (** best )
124
126
model .fit (self .lgtrain .data ,
125
127
self .lgtrain .label ,
@@ -164,7 +166,7 @@ def objective(params):
164
166
stratified = True ,
165
167
early_stopping_rounds = 20 )
166
168
self .early_stop_dict [objective .i ] = len (cv_result ['binary_logloss-mean' ])
167
- error = round ( cv_result ['binary_logloss-mean' ][- 1 ], 4 )
169
+ error = cv_result ['binary_logloss-mean' ][- 1 ]
168
170
objective .i += 1
169
171
return error
170
172
@@ -175,7 +177,7 @@ def hyperparameter_space(self, param_space=None):
175
177
space = {
176
178
'learning_rate' : hp .uniform ('learning_rate' , 0.01 , 0.2 ),
177
179
'num_boost_round' : hp .quniform ('num_boost_round' , 50 , 500 , 20 ),
178
- 'num_leaves' : hp .quniform ('num_leaves' , 31 , 255 , 4 ),
180
+ 'num_leaves' : hp .quniform ('num_leaves' , 31 , 256 , 4 ),
179
181
'min_child_weight' : hp .uniform ('min_child_weight' , 0.1 , 10 ),
180
182
'colsample_bytree' : hp .uniform ('colsample_bytree' , 0.5 , 1. ),
181
183
'subsample' : hp .uniform ('subsample' , 0.5 , 1. ),
0 commit comments