Skip to content

Commit b477b26

Browse files
committed
change categorical with integer
1 parent 6373e4b commit b477b26

File tree

3 files changed

+14
-12
lines changed

3 files changed

+14
-12
lines changed

initialize.py

+7-7
Original file line numberDiff line numberDiff line change
@@ -61,13 +61,13 @@ def create_model():
6161
print("creating model...")
6262
init_dataprocessor = 'dataprocessor_0_.p'
6363
dtrain = pickle.load(open(DATAPROCESSORS_PATH/init_dataprocessor, 'rb'))
64-
# LGBOpt = LGBOptimizer(dtrain, MODELS_PATH)
65-
# LGBOpt.optimize(maxevals=10)
66-
LGBOpt = LGBOptimizer(dtrain, str(MODELS_PATH))
67-
LGBOpt.optimize('f1_score', StratifiedKFold, n_splits=3, maxevals=10)
64+
LGBOpt = LGBOptimizer(dtrain, MODELS_PATH)
65+
LGBOpt.optimize(maxevals=10)
66+
# LGBOpt = LGBOptimizer(dtrain, str(MODELS_PATH))
67+
# LGBOpt.optimize('f1_score', StratifiedKFold, n_splits=3, maxevals=10)
6868

6969
if __name__ == '__main__':
70-
create_folders()
71-
download_data()
70+
# create_folders()
71+
# download_data()
7272
create_data_processor()
73-
create_model()
73+
# create_model()

train/train_hyperopt_mlflow.py

+5-3
Original file line numberDiff line numberDiff line change
@@ -117,9 +117,11 @@ def optimize(self, maxevals=50, model_id=0):
117117
else:
118118
client = MlflowClient()
119119
n_experiments = len(client.list_experiments())
120-
client.create_experiment(name=str(n_experiments))
120+
experiment_name = 'experiment_' + str(n_experiments)
121+
client.create_experiment(name=experiment_name)
121122
experiments = client.list_experiments()
122123
with mlflow.start_run(experiment_id=experiments[-1].experiment_id) as run:
124+
# with mlflow.start_run() as run:
123125
model = lgb.LGBMClassifier(**best)
124126
model.fit(self.lgtrain.data,
125127
self.lgtrain.label,
@@ -164,7 +166,7 @@ def objective(params):
164166
stratified=True,
165167
early_stopping_rounds=20)
166168
self.early_stop_dict[objective.i] = len(cv_result['binary_logloss-mean'])
167-
error = round(cv_result['binary_logloss-mean'][-1], 4)
169+
error = cv_result['binary_logloss-mean'][-1]
168170
objective.i+=1
169171
return error
170172

@@ -175,7 +177,7 @@ def hyperparameter_space(self, param_space=None):
175177
space = {
176178
'learning_rate': hp.uniform('learning_rate', 0.01, 0.2),
177179
'num_boost_round': hp.quniform('num_boost_round', 50, 500, 20),
178-
'num_leaves': hp.quniform('num_leaves', 31, 255, 4),
180+
'num_leaves': hp.quniform('num_leaves', 31, 256, 4),
179181
'min_child_weight': hp.uniform('min_child_weight', 0.1, 10),
180182
'colsample_bytree': hp.uniform('colsample_bytree', 0.5, 1.),
181183
'subsample': hp.uniform('subsample', 0.5, 1.),

train/train_hyperparameterhunter_mlfow.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -113,8 +113,8 @@ def hyperparameter_space(self, param_space=None):
113113
space = dict(
114114
is_unbalance = True,
115115
learning_rate = Real(0.01, 0.3),
116-
num_boost_round=Categorical(np.arange(50, 500, 20)),
117-
num_leaves=Categorical(np.arange(31, 256, 4)),
116+
num_boost_round=Integer(50, 500),
117+
num_leaves=Integer(31, 255),
118118
min_child_weight = Real(0.1, 10),
119119
colsample_bytree= Real(0.5, 1.),
120120
subsample=Real(0.5, 1.),

0 commit comments

Comments
 (0)