-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlasso_test.m
610 lines (541 loc) · 33.5 KB
/
lasso_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
% Extracting input matrices for GLM analysis in each neuron from an Uber_2padArray u
%
% Dependency:
% - Uber class
% - jkWhiskerOnsetNAmplitude
%
%
% inputs:
% - mouse (as in number)
% - session (as in number)
% - cellnum (1~length(total number of cells)),
% - nShift (number of frames to shift, either forward or backward. Default: 3)
%
%
% outputs:
% - cid: cell id (1000~8999)
% - frameRate
% - spk: spikes (vector. Padded with NaN's of length nShift before and after each trial)
%
% % sensory variables: shift backward only
% % Same length as spk.
% - pTouchCount: # of protraction touches within the frame (parameter).
% Retraction touches removed due to limited number of trials (most times none).
%
% - pTouchFrames: protraction touch frames (binary)
%
% - pTouchDuration: protraction touch duration within each tpm frame (parameter, in ms)
% Up to here, have one as all angles and add each angles (total number of predictors: 1 + length(angles)
%
% - scPoleup: pole up sound cue onset (binary)
% - scPoledown: pole down sound cue onset (binary)
% Piezo sound cue removed because it is always at the first frame, and cannot be dealt with NaN paddings
%
%
% - drinkOnset: drinking onset (binary)
%
%
% % motor variables: shift both backward and forward
% - whiskingOnset: whisking onset (parameter; # of onset in each frame)
% - whiskingAmp: whisking amplitude (parameter; from whisker decomposition; maximum of the frame)
% - whiskingOA: whisking onset & amplitude. maximum amplitude where there was whisking onset (>= 1)
% - whiskingMidpoint: whisking midpoint(parameter; from whisker decomposition)
%
% - lLick: left licks within the frame (parameter)
% - rLick: right licks within the frame (parameter)
%
% - lLickOnset: the frame where left lick onset happened (binary; each bout is calculated as 1 s interval)
% - lLickOffset: the frame where left lick offset happened (binary; each bout is calculated as 1 s interval)
% - rLickOnset
% - rLickoffset
%
% - firstLick:
% - firstLeftLick: the frame where the first lick of the trial happened (binary)
% - lastLeftLick: the frame where the last lick of the trial happened (binary)
% - firstRightLick
% - lastRightLick
baseDir = 'C:\JK\';
mice = [25,27,30,36,37,38,39,41,52,53,54,56];
sessions = {[4,19],[3,16],[3,21],[1,17],[7],[2],[1,22],[3],[3,21],[3],[3],[3]};
repetition = 10;
startRepetition = 1;
% sessions = {[4,19],[3,16],[3,21],[1,17],[7],[2],[1,22],[3],[3,21],[3],[3],[3]};
% errorCell = {{[],[224]},{[],[]},{[],[]},{[],[]},{[]},{[]},{[1211,1972],[1286]},{[]},{[],[605, 676, 740, 755, 811]},{[]},{[]},{[]}};
% errorCell = {{[],[]},{[],[]},{[],[]},{[],[]},{[]},{[]},{[2042,2059],[]},{[]},{[],[]},{[]},{[]},{[]}};
errorCell = {{[],[]},{[],[]},{[],[]},{[],[]},{[]},{[]},{[],[]},{[]},{[],[]},{[]},{[]},{[]}};
%%
% mice = [25,27,30];
% sessions = {[17],[7],[2],[1,22],[3],[3,21],[3],[3],[3]};
% sessions = {[19],[3,16],[3,21],[1,17],[7],[2],[1,22],[3],[3,21],[3],[3],[3]};
% for mi = 1 : length(mice)
for mi = 4
% for si = 1:length(sessions{mi})
for si = 1
for loop = 3 : 10
errorCellSession = errorCell{mi}{si};
poolobj = gcp('nocreate');
if poolobj.SpmdEnabled == 0
error('SpmdEnabled turned to false at #1');
end
mouse = mice(mi);
session = sessions{mi}(si);
posShiftTouch = 2;
posShiftSound = 4;
posShiftReward = 4;
posShiftMotor = 3;
posShift = 4; % maximum posShift
negShift = 2;
testPortion = 0.3; % 30 % test set
pThresholdNull = 0.05;
pThresholdPartial = 0.05;
lickBoutInterval = 1; % licks separated by 1 s regarded as different licking bouts
glmnetOpt = glmnetSet;
glmnetOpt.standardize = 0; % do the standardization at the level of predictors, including both training and test
glmnetOpt.alpha = 0.95;
partialGlmOpt = glmnetOpt;
partialGlmOpt.alpha = 0;
lambdaCV = 5; % cross-validation fold number
dn = sprintf('%s%03d',baseDir,mouse);
ufn = sprintf('UberJK%03dS%02d.mat', mouse, session);
cd(dn)
if exist(ufn,'file')
load(ufn)
else
u = Uber.buildUberArray(mouse, session);
end
frameRate = u.frameRate;
savefnResult = sprintf('glmRepeatTestJK%03dS%02dLoop%02d',mouse, session, loop); % m(n) meaining method(n)
%% pre-processing for lick onset and offset
% regardless of licking alternating, each l and r has it's own lick onset and offset. both licking, just take the union
v = cell(length(u.trials),1);
for ui = 1 : length(u.trials)
bothLickTime = union(u.trials{ui}.leftLickTime, u.trials{ui}.rightLickTime);
if length(bothLickTime) == 1
v{ui}.bothLickOnset = bothLickTime;
v{ui}.bothLickOffset = bothLickTime;
v{ui}.firstLick = bothLickTime;
if u.trials{ui}.response < 1
v{ui}.lastLick = bothLickTime;
else
v{ui}.lastLick = [];
end
elseif length(bothLickTime) > 1
onsets = find(diff(bothLickTime) > lickBoutInterval);
if isempty(onsets)
v{ui}.bothLickOnset = bothLickTime(1);
v{ui}.bothLickOffset = bothLickTime(end);
else
v{ui}.bothLickOnset = bothLickTime([1; onsets+1]);
v{ui}.bothLickOffset = bothLickTime([onsets; end]);
end
v{ui}.firstLick = bothLickTime(1);
if u.trials{ui}.response < 1
v{ui}.lastLick = bothLickTime(end);
else
v{ui}.lastLick = [];
end
else
v{ui}.bothLickOnset = [];
v{ui}.bothLickOffset = [];
v{ui}.firstLick = [];
v{ui}.lastLick = [];
end
if length(u.trials{ui}.leftLickTime) == 1
v{ui}.leftLickOnset = u.trials{ui}.leftLickTime;
v{ui}.leftLickOffset = u.trials{ui}.leftLickTime;
v{ui}.firstLeftLick = u.trials{ui}.leftLickTime;
if u.trials{ui}.response < 1
if isempty(u.trials{ui}.rightLickTime)
v{ui}.lastLeftLick = u.trials{ui}.leftLickTime;
elseif u.trials{ui}.rightLickTime(end) < u.trials{ui}.leftLickTime(end)
v{ui}.lastLeftLick = u.trials{ui}.leftLickTime;
else
v{ui}.lastLeftLick = [];
end
else
v{ui}.lastLeftLick = [];
end
elseif length(u.trials{ui}.leftLickTime) > 1
onsets = find(diff(u.trials{ui}.leftLickTime) > lickBoutInterval);
if isempty(onsets)
v{ui}.leftLickOnset = u.trials{ui}.leftLickTime(1);
v{ui}.leftLickOffset = u.trials{ui}.leftLickTime(end);
else
v{ui}.leftLickOnset = u.trials{ui}.leftLickTime([1; onsets+1]);
v{ui}.leftLickOffset = u.trials{ui}.leftLickTime([onsets; end]);
end
v{ui}.firstLeftLick = u.trials{ui}.leftLickTime(1);
if u.trials{ui}.response < 1
if isempty(u.trials{ui}.rightLickTime)
v{ui}.lastLeftLick = u.trials{ui}.leftLickTime;
elseif u.trials{ui}.rightLickTime(end) < u.trials{ui}.leftLickTime(end)
v{ui}.lastLeftLick = u.trials{ui}.leftLickTime;
else
v{ui}.lastLeftLick = [];
end
else
v{ui}.lastLeftLick = [];
end
else
v{ui}.leftLickOnset = [];
v{ui}.leftLickOffset = [];
v{ui}.firstLeftLick = [];
v{ui}.lastLeftLick = [];
end
if length(u.trials{ui}.rightLickTime) == 1
v{ui}.rightLickOnset = u.trials{ui}.rightLickTime;
v{ui}.rightLickOffset = u.trials{ui}.rightLickTime;
v{ui}.firstRightLick = u.trials{ui}.rightLickTime;
if u.trials{ui}.response < 1
if isempty(u.trials{ui}.leftLickTime)
v{ui}.lastRightLick = u.trials{ui}.rightLickTime;
elseif u.trials{ui}.leftLickTime(end) < u.trials{ui}.rightLickTime(end)
v{ui}.lastRightLick = u.trials{ui}.rightLickTime;
else
v{ui}.lastRightLick = [];
end
else
v{ui}.lastRightLick = [];
end
elseif length(u.trials{ui}.rightLickTime) > 1
onsets = find(diff(u.trials{ui}.rightLickTime) > lickBoutInterval);
if isempty(onsets)
v{ui}.rightLickOnset = u.trials{ui}.rightLickTime(1);
v{ui}.rightLickOffset = u.trials{ui}.rightLickTime(end);
else
v{ui}.rightLickOnset = u.trials{ui}.rightLickTime([1; onsets+1]);
v{ui}.rightLickOffset = u.trials{ui}.rightLickTime([onsets; end]);
end
v{ui}.firstRightLick = u.trials{ui}.rightLickTime(1);
if u.trials{ui}.response < 1
if isempty(u.trials{ui}.leftLickTime)
v{ui}.lastRightLick = u.trials{ui}.rightLickTime;
elseif u.trials{ui}.leftLickTime(end) < u.trials{ui}.rightLickTime(end)
v{ui}.lastRightLick = u.trials{ui}.rightLickTime;
else
v{ui}.lastRightLick = [];
end
else
v{ui}.lastRightLick = [];
end
else
v{ui}.rightLickOnset = [];
v{ui}.rightLickOffset = [];
v{ui}.firstRightLick = [];
v{ui}.lastRightLick = [];
end
v{ui}.tpmTime = u.trials{ui}.tpmTime;
end
% %% repetition test
% % division = 20;
%% divide into training set and test set (70%, 30%)
% based on the animal touched or not, the choice (same as the result since I'm going to mix the pole angles, so right, wrong, and miss), pole angles (2 or 7), and the distance (if there were multiple distances)
% in this order, make trees, and take 30% of the leaves (or equivalently, take all the possible intersections and take 30%)
angles = unique(cellfun(@(x) x.angle, u.trials));
distances = unique(cellfun(@(x) x.distance, u.trials));
touchGroup = cell(2,1);
choiceGroup = cell(3,1);
angleGroup = cell(length(angles),1);
distanceGroup = cell(length(distances),1);
timeGroup = cell(3,1); % dividing whole session into 5 different time points
ptouchGroup{1} = cellfun(@(x) x.trialNum, u.trials(find(cellfun(@(x) length(x.protractionTouchChunks), u.trials))));
ptouchGroup{2} = setdiff(u.trialNums, ptouchGroup{1});
rtouchGroup{1} = cellfun(@(x) x.trialNum, u.trials(find(cellfun(@(x) length(x.retractionTouchChunks), u.trials))));
rtouchGroup{2} = setdiff(u.trialNums, rtouchGroup{1});
choiceGroup{1} = cellfun(@(x) x.trialNum, u.trials(find(cellfun(@(x) x.response == 1, u.trials))));
choiceGroup{2} = cellfun(@(x) x.trialNum, u.trials(find(cellfun(@(x) x.response == 0, u.trials))));
choiceGroup{3} = cellfun(@(x) x.trialNum, u.trials(find(cellfun(@(x) x.response == -1, u.trials))));
for i = 1 : length(angles)
angleGroup{i} = cellfun(@(x) x.trialNum, u.trials(find(cellfun(@(x) x.angle == angles(i), u.trials))));
end
for i = 1 : length(distances)
distanceGroup{i} = cellfun(@(x) x.trialNum, u.trials(find(cellfun(@(x) x.distance == distances(i), u.trials))));
end
for i = 1 : length(timeGroup)
timeGroup{i} = u.trialNums((i-1)*length(u.trialNums)/length(timeGroup)+1:(i-1)*length(u.trialNums)/length(timeGroup));
end
%%
testTn = [];
for pti = 1 : length(ptouchGroup)
% for rti = 1 : length(rtouchGroup)
for ci = 1 : length(choiceGroup)
for ai = 1 : length(angleGroup)
for di = 1 : length(distanceGroup)
% for ti = 1 : length(timeGroup)
% tempTn = intersect(timeGroup{ti}, intersect(ptouchGroup{pti}, intersect(rtouchGroup{rti}, intersect(choiceGroup{ci}, intersect(angleGroup{ai}, distanceGroup{di})))));
tempTn = intersect(ptouchGroup{pti}, intersect(choiceGroup{ci}, intersect(angleGroup{ai}, distanceGroup{di})));
if ~isempty(tempTn)
tempTn = tempTn(randperm(length(tempTn)));
testTn = [testTn; tempTn(1:round(length(tempTn)*0.3))];
end
% end
end
end
end
% end
end
%
totalTn = u.trialNums;
[~,testInd] = ismember(testTn, totalTn);
trainingTn = setdiff(totalTn, testTn);
[~,trainingInd] = ismember(trainingTn, totalTn);
%% Design matrices
% standardized using all the trials
allPredictors = cell(8,1);
allPredictorsMean = cell(8,1);
allPredictorsStd = cell(8,1);
nani = cell(8,1);
trainingPredictorInd = cell(8,1);
testPredictorInd = cell(8,1);
trainingInputMat = cell(8,1);
testInputMat = cell(8,1);
for cgi = 1:2 % cell group index
% for cgi = 1
tindcell = find(cellfun(@(x) ismember(1001+(cgi-1)*4000, x.neuindSession), u.trials));
tind = tindcell;
for plane = 1 : 4
% for plane = 1
trainingPredictorInd{(cgi-1)*4 + plane} = cell2mat(cellfun(@(x) (ones(1,length(x.tpmTime{plane})+posShift*2)) * ismember(x.trialNum, trainingTn), u.trials(tind)','uniformoutput',false));
testPredictorInd{(cgi-1)*4 + plane} = cell2mat(cellfun(@(x) (ones(1,length(x.tpmTime{plane})+posShift*2)) * ismember(x.trialNum, testTn), u.trials(tind)','uniformoutput',false));
pTouchCount = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(cellfun(@(y) y(1), x.protractionTouchChunks), [0, x.tpmTime{plane}]), nan(1,posShift)], u.trials(tind)','uniformoutput',false));
pTouchDuration = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(cell2mat(cellfun(@(y) y', x.protractionTouchChunks, 'uniformoutput', false)), [0, x.tpmTime{plane}]), nan(1,posShift)], ...
u.trials(tind)','uniformoutput',false));
pTouchCountAngles = cell(length(angles)+1,1);
pTouchDurationAngles = cell(length(angles)+1,1);
for ai = 1 : length(angles)
tempAngleBinary = cell2mat(cellfun(@(x) ones(length(x.tpmTime{plane}) + 2 * posShift, 1) * (x.angle == angles(ai)), u.trials(tind), 'uniformoutput', false));
pTouchCountAngles{ai} = pTouchCount .* tempAngleBinary';
pTouchDurationAngles{ai} = pTouchDuration .* tempAngleBinary';
end
pTouchCountAngles{end} = pTouchCount;
pTouchDurationAngles{end} = pTouchDuration;
scPiezo = cell2mat(cellfun(@(x) [nan(1,posShift), 1, zeros(1,length(x.tpmTime{plane})-1), nan(1,posShift)], u.trials(tind)','uniformoutput',false));
scPoleup = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(x.poleUpOnsetTime, [0, x.tpmTime{plane}]), nan(1,posShift)], u.trials(tind)','uniformoutput',false));
scPoledown = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(x.poleDownOnsetTime, [0, x.tpmTime{plane}]), nan(1,posShift)], u.trials(tind)','uniformoutput',false));
drinkOnset = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(x.drinkingOnsetTime, [0, x.tpmTime{plane}]), nan(1,posShift)], u.trials(tind)','uniformoutput',false));
lLick = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(x.leftLickTime, [0, x.tpmTime{plane}]), nan(1,posShift)], u.trials(tind)','uniformoutput',false));
rLick = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(x.rightLickTime, [0, x.tpmTime{plane}]), nan(1,posShift)], u.trials(tind)','uniformoutput',false));
lastLeftLick = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(x.lastLeftLick, [0, x.tpmTime{plane}]), nan(1,posShift)], v(tind)','uniformoutput',false));
lastRightLick = cell2mat(cellfun(@(x) [nan(1,posShift), histcounts(x.lastRightLick, [0, x.tpmTime{plane}]), nan(1,posShift)], v(tind)','uniformoutput',false));
%%
whiskingOnsetCell = cell(1,length(tind));
whiskingMidpointCell = cell(1,length(tind));
for ti = 1 : length(tind)
currTrial = u.trials{tind(ti)};
time = [0, currTrial.tpmTime{plane}];
wtimes = currTrial.whiskerTime;
[onsetFrame, amplitude, midpoint] = jkWhiskerOnsetNAmplitude(currTrial.theta);
whiskerVideoFrameDuration = u.trials{tind(1)}.frameDuration; % in s
onsetTimes = onsetFrame*whiskerVideoFrameDuration; % back to s
whiskingOnsetCell{ti} = [nan(1,posShift), histcounts(onsetTimes, time), nan(1,posShift)];
tempMid = zeros(1,length(time)-1);
for i = 1 : length(tempMid)
startInd = find(wtimes >= time(i), 1, 'first');
endInd = find(wtimes < time(i+1), 1, 'last');
tempMid(i) = mean(midpoint(startInd:endInd));
end
tempMid(isnan(tempMid)) = deal(mode(tempMid(isfinite(tempMid))));
whiskingMidpointCell{ti} = [nan(1,posShift), tempMid, nan(1,posShift)];
end
whiskingOnset = cell2mat(whiskingOnsetCell);
whiskingMidpoint = cell2mat(whiskingMidpointCell);
%%
pTouchCountMat = zeros(length(pTouchCount), (posShiftTouch + 1) * (length(angles)+1));
% pTouchDurationMat = zeros(length(pTouchDuration), (posShiftTouch + 1) * (length(angles)+1));
scPiezoMat = zeros(length(scPiezo), posShiftSound + 1);
scPoleUpMat = zeros(length(scPoleup), posShiftSound + 1);
scPoleDownMat = zeros(length(scPoledown), posShiftSound + 1);
drinkOnsetMat = zeros(length(drinkOnset), posShiftReward + 1);
for i = 1 : posShiftTouch + 1
for ai = 1 : length(angles) + 1
pTouchCountMat(:,(i-1)*(length(angles)+1) + ai) = circshift(pTouchCountAngles{ai}, [0 i-1])';
% pTouchDurationMat(:,(i-1)*(length(angles)+1) + ai) = circshift(pTouchDurationAngles{ai}, [0 i-1])';
end
end
for i = 1 : posShiftSound
scPiezoMat(:,i) = circshift(scPiezo, [0 i-1])';
scPoleUpMat(:,i) = circshift(scPoleup, [0 i-1])';
scPoleDownMat(:,i) = circshift(scPoledown, [0 i-1])';
end
for i = 1 : posShiftReward
drinkOnsetMat(:,i) = circshift(drinkOnset, [0 i-1])';
end
whiskingOnsetMat = zeros(length(whiskingOnset), negShift + posShiftMotor + 1);
whiskingMidpointMat = zeros(length(whiskingMidpoint), negShift + posShiftMotor + 1);
lLickMat = zeros(length(lLick), negShift + posShiftMotor + 1);
rLickMat = zeros(length(rLick), negShift + posShiftMotor + 1);
lastLeftLickMat = zeros(length(lastLeftLick), negShift + posShiftMotor + 1);
lastRightLickMat = zeros(length(lastRightLick), negShift + posShiftMotor + 1);
for i = 1 : negShift + posShiftMotor + 1
whiskingOnsetMat(:,i) = circshift(whiskingOnset, [0 -negShift + i - 1])';
whiskingMidpointMat(:,i) = circshift(whiskingMidpoint, [0 -negShift + i - 1])';
lLickMat(:,i) = circshift(lLick, [0 -negShift + i - 1])';
rLickMat(:,i) = circshift(rLick, [0 -negShift + i - 1])';
lastLeftLickMat(:,i) = circshift(lastLeftLick, [0 -negShift + i - 1])';
lastRightLickMat(:,i) = circshift(lastRightLick, [0 -negShift + i - 1])';
end
% touchMat = [tTouchCountMat, pTouchCountMat, rTouchCountMat, tTouchFramesMat, pTouchFramesMat, rTouchFramesMat, tTouchDurationMat, pTouchDurationMat, rTouchDurationMat];
touchMat = [pTouchCountMat];
soundMat = [scPiezoMat, scPoleUpMat, scPoleDownMat];
drinkMat = drinkOnsetMat;
whiskingMat = [whiskingOnsetMat, whiskingMidpointMat];
lickingMat = [lLickMat, rLickMat, lastLeftLickMat, lastRightLickMat];
allPredictors{(cgi-1)*4 + plane} = [touchMat, soundMat, drinkMat, whiskingMat, lickingMat];
nani{(cgi-1)*4 + plane} = find(nanstd(allPredictors{(cgi-1)*4 + plane})==0);
allPredictorsMean{(cgi-1)*4 + plane} = nanmean(allPredictors{(cgi-1)*4 + plane});
allPredictorsStd{(cgi-1)*4 + plane} = nanstd(allPredictors{(cgi-1)*4 + plane});
% normalization of all predictors
allPredictors{(cgi-1)*4 + plane} = (allPredictors{(cgi-1)*4 + plane} - nanmean(allPredictors{(cgi-1)*4 + plane})) ./ nanstd(allPredictors{(cgi-1)*4 + plane});
allPredictors{(cgi-1)*4 + plane}(:,nani{(cgi-1)*4 + plane}) = deal(0);
trainingInputMat{(cgi-1)*4 + plane} = allPredictors{(cgi-1)*4 + plane}(find(trainingPredictorInd{(cgi-1)*4 + plane}),:);
testInputMat{(cgi-1)*4 + plane} = allPredictors{(cgi-1)*4 + plane}(find(testPredictorInd{(cgi-1)*4 + plane}),:);
end
end
%%
touchInd = 1 : size(touchMat,2);
soundInd = max(touchInd) + 1 : max(touchInd) + size(soundMat,2);
rewardInd = max(soundInd) + 1 : max(soundInd) + size(drinkMat,2);
whiskingInd = max(rewardInd) + 1 : max(rewardInd) + size(whiskingMat,2);
lickInd = max(whiskingInd) + 1 : max(whiskingInd) + size(lickingMat,2);
indPartial{1} = touchInd;
indPartial{2} = soundInd;
indPartial{3} = rewardInd;
indPartial{4} = whiskingInd;
indPartial{5} = lickInd;
%%
% rtest(ri).fitInd = cell(length(u.cellNums),1); % parameters surviving lasso in training set
% rtest(ri).fitCoeffs = cell(length(u.cellNums),1); % intercept + coefficients of the parameters in training set
% rtest(ri).fitCoeffInds = nan(length(u.cellNums),6); % first column is dummy
%
% rtest(ri).fitResults = zeros(length(u.cellNums), 6);
% % fitResult(:,1) if full fitting is significant (compared to null model), 0 if not
% % fitResult(:,2) for touchInd, compared to full fitting. if excluding touch
% % is significantly less fit, then 1, 0 otherwise
% % fitResult(:,3) for sound, (:,4) for reward, (:,5) for whisking, and (:,6) for licking
% rtest(ri).devExplained = zeros(length(u.cellNums),1);
cIDAll = u.cellNums;
numCell = length(cIDAll);
fitInd = cell(numCell,1); % parameters surviving lasso in training set
fitCoeffs = cell(numCell,1); % intercept + coefficients of the parameters in training set
fitCoeffInds = nan(numCell,6); % first column is a dummy
fitResults = zeros(numCell, 6); % fitting result from test set
fitDeviance = zeros(numCell,1);
fitCorrelation = zeros(numCell,1);
fitCorrPval = zeros(numCell,1);
fitDevExplained = zeros(numCell,1); % deviance explained from test set
fitCvDev = zeros(numCell,1); % deviance explained from training set
fitLambda = zeros(numCell,1);
fitDF = zeros(numCell,1);
started = zeros(numCell,1);
done = zeros(numCell,1);
cellTime = zeros(numCell,1);
tindcellAll = cell(numCell,1);
cindAll = zeros(numCell,1);
planeIndAll = zeros(numCell,1);
iTrainAll = cell(numCell,1);
iTestAll = cell(numCell,1);
for i = 1 : numCell
tindcellAll{i} = find(cellfun(@(x) ismember(cIDAll(i), x.neuindSession), u.trials));
cindAll(i) = find(u.trials{tindcellAll{i}(1)}.neuindSession == cIDAll(i));
planeIndAll(i) = floor(cIDAll(i)/1000);
iTrainAll{i} = intersect(tindcellAll{i}, trainingInd);
iTestAll{i} = intersect(tindcellAll{i}, testInd);
end
spikeAll = cellfun(@(x) x.spk, u.trials, 'uniformoutput', false);
poolobj = gcp('nocreate');
if poolobj.SpmdEnabled == 0
error('SpmdEnabled turned to false at #2');
end
for ri = startRepetition : repetition % repetition index
parfor cellnum = 1 : numCell
% for cellnum = 102, 127, (212 convergence error), 221, 658
% ci = 0;
% for cellnum = 1:division:length(u.cellNums)
% ci = ci + 1;
% for cellnum = 1
% cellnum = 1;
if ~ismember(numCell, errorCellSession)
cellTimeStart = tic;
fitCoeffInd = zeros(1,6);
fprintf('Mouse JK%03d session S%02d Loop %02d Repeat %02d: Running cell %d/%d \n', mouse, session, loop, ri, cellnum, numCell);
% fprintf('Mouse JK%03d session S%02d: Running cell %d/%d \n', mouse, session,cellnum, numCell);
started(cellnum) = cellnum;
iTrain = iTrainAll{cellnum};
cind = cindAll(cellnum);
planeInd = planeIndAll(cellnum);
spkTrain = cell2mat(cellfun(@(x) [nan(1,posShift), x(cind,:), nan(1,posShift)], spikeAll(iTrain)','uniformoutput',false));
finiteIndTrain = intersect(find(isfinite(spkTrain)), find(isfinite(sum(trainingInputMat{planeInd},2))));
input = trainingInputMat{planeInd}(finiteIndTrain,:);
spkTrain = spkTrain(finiteIndTrain)';
cv = cvglmnet(input, spkTrain, 'poisson', glmnetOpt, [], lambdaCV);
%% survived coefficients
fitLambda(cellnum) = cv.lambda_1se;
iLambda = find(cv.lambda == cv.lambda_1se);
fitCoeffs{cellnum} = [cv.glmnet_fit.a0(iLambda);cv.glmnet_fit.beta(:,iLambda)];
coeffInds = find(cv.glmnet_fit.beta(:,iLambda));
% rtest(ri).fitInd{cellnum} = coeffInds;
fitInd{cellnum} = coeffInds;
for i = 1 : length(indPartial)
if sum(ismember(indPartial{i},coeffInds)>0)
fitCoeffInd(i + 1) = 1;
else
fitCoeffInd(i + 1) = 0;
end
end
%% test
iTest = iTestAll{cellnum};
spkTest = cell2mat(cellfun(@(x) [nan(1,posShift), x(cind,:), nan(1,posShift)], spikeAll(iTest)','uniformoutput',false));
spkTest = spkTest';
finiteIndTest = intersect(find(isfinite(spkTest)), find(isfinite(sum(testInputMat{planeInd},2))));
spkTest = spkTest(finiteIndTest)';
%% (1) if the full model is significant
fitResult = zeros(1,6);
model = exp([ones(length(finiteIndTest),1),testInputMat{planeInd}(finiteIndTest,:)]*[cv.glmnet_fit.a0(iLambda); cv.glmnet_fit.beta(:,iLambda)]);
mu = mean(spkTest); % null poisson parameter
nullLogLikelihood = sum(log(poisspdf(spkTest,mu)));
fullLogLikelihood = sum(log(poisspdf(spkTest',model)));
saturatedLogLikelihood = sum(log(poisspdf(spkTest,spkTest)));
devianceFullNull = 2*(fullLogLikelihood - nullLogLikelihood);
fitDeviance(cellnum) = devianceFullNull;
[fitCorrelation(cellnum), fitCorrPval(cellnum)] = corr(spkTest', model);
dfFullNull = length(coeffInds);
fitDF(cellnum) = dfFullNull;
fitDevExplained(cellnum) = 1 - (saturatedLogLikelihood - fullLogLikelihood)/(saturatedLogLikelihood - nullLogLikelihood);
fitCvDev(cellnum) = cv.glmnet_fit.dev(iLambda);
if devianceFullNull > chi2inv(1-pThresholdNull, dfFullNull)
fitResult(1) = 1;
%% (2) test without each parameter (as a group)
% for pi = 1 : 5
% if find(ismember(coeffInds, indPartial{pi}))
% if all(ismember(coeffInds, indPartial{pi}))
% fitResult(pi+1) = 1;
% break
% else
% tempTrainInput = trainingInputMat{planeInd}(:,setdiff(coeffInds,indPartial{pi}));
% tempTestInput = testInputMat{planeInd}(finiteIndTest,setdiff(coeffInds,indPartial{pi}));
% cvPartial = cvglmnet(tempTrainInput(finiteIndTrain,:), spkTrain, 'poisson', partialGlmOpt, [], lambdaCV);
% iLambda = find(cvPartial.lambda == cvPartial.lambda_1se);
% partialLogLikelihood = sum(log(poisspdf(spkTest', exp([ones(length(finiteIndTest),1), tempTestInput] * [cvPartial.glmnet_fit.a0(iLambda); cvPartial.glmnet_fit.beta(:,iLambda)]))));
% devianceFullPartial = 2*(fullLogLikelihood - partialLogLikelihood);
% dfFullPartial = dfFullNull - length(setdiff(coeffInds, indPartial{pi}));
% if devianceFullPartial > chi2inv(1-pThresholdPartial, dfFullPartial)
% fitResult(pi+1) = 1;
% end
% end
% end
% end
end
fitResults(cellnum,:) = fitResult;
fitCoeffInds(cellnum,:) = fitCoeffInd;
done(cellnum) = cellnum;
cellTime(cellnum) = toc(cellTimeStart);
end
end % end of parfor cellnum
%%
save(sprintf('%s_R%02d',savefnResult, ri), 'fit*', 'allPredictors', '*InputMat', 'indPartial', '*Group', '*Tn', 'lambdaCV', '*Opt', 'done', 'pThreshold*', '*Shift', 'cellTime', 'testInd', 'trainingInd', 'cIDAll');
push_myphone(sprintf('Lasso GLM done for JK%03d S%02d Loop %02d repeat %02d', mouse, session, loop, ri))
end % of ri. random group selection index
push_myphone(sprintf('Lasso GLM done for JK%03d S%02d, Big loop %02d', mouse, session, loop))
end
end
end