-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
113 lines (86 loc) · 4.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import warnings
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
warnings.filterwarnings('always')
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=ConvergenceWarning)
def genre_splitter(genre):
result = genre.copy()
result = result.str.split(" ", 1)
for i in range(len(result)):
if len(result[i]) > 1:
result[i] = [result[i][1]]
return result.str.join('')
def dedupe_genres(genre_column):
while max((genre_column.str.split(" ", 1)).str.len()) > 1:
genre_column = genre_splitter(genre_column)
return genre_column
def load_data(path: str):
data = pd.read_csv(path)
data.columns = ['index', 'title', 'artist', 'genre', 'year', 'bpm', 'energy', 'danceability', 'db', 'liveness',
'valence', 'duration', 'acousticness', 'speechiness', 'popularity']
# ne zelimo ovi podaci da uticu na predikcije
data.drop(['artist', 'index', 'title'], inplace=True, axis=1)
data = data.dropna()
# gledamo da li su neke kolone neravnomerne
# data.hist(bins=20, figsize=(15, 15))
# plt.show()
# izbacujemo neadekvatne kolone
data.drop(['liveness', 'acousticness', 'speechiness'], inplace=True, axis=1)
y = data['genre']
y = dedupe_genres(y)
X = data.drop('genre', axis=1)
return train_test_split(X, y, test_size=0.33)
def svm(X_train, y_train):
std_scaler = StandardScaler()
X_scaled_train = std_scaler.fit_transform(X_train)
svm_clf = OneVsRestClassifier(LinearSVC(C=0.01, loss='hinge', random_state=1))
svm_clf.fit(X_scaled_train, y_train)
preds = svm_clf.predict(X_scaled_train)
def logistic_regression(X_train, y_train):
ovr_clf = OneVsRestClassifier(LogisticRegression(max_iter=1000, random_state=1))
ovr_clf.fit(X_train, y_train)
y_test_pred = ovr_clf.predict(X_test)
# confusion_matrix(y_test, y_test_pred)
print(accuracy_score(y_test, y_test_pred))
def random_forest_classifier(X_train, y_train):
rnd_clf = RandomForestClassifier(n_estimators=25, max_leaf_nodes=16, n_jobs=-1, random_state=1)
rnd_clf.fit(X_train, y_train)
ypred = rnd_clf.predict(X_test)
print(accuracy_score(y_test, ypred))
def grid_search(X_train, y_train):
SVCpipe = Pipeline([('scale', StandardScaler()),
('SVC', LinearSVC())])
param_grid = {'SVC__C': np.arange(0.01, 100, 10)}
linearSVC = GridSearchCV(SVCpipe, param_grid, cv=5, return_train_score=True)
linearSVC.fit(X_train, y_train)
print(linearSVC.best_params_) # najbolji za C je: {'SVC__C': 0.01}
if __name__ == '__main__':
X_train, X_test, y_train, y_test = load_data('data/Spotify-2000.csv')
# svm(X_train, y_train)
# logistic_regression(X_train,y_train)
# random_forest_classifier(X_train,y_train)
pca = PCA(0.95)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
rnd_clf = RandomForestClassifier(random_state=1)
log_clf = OneVsRestClassifier(LogisticRegression(max_iter=1000, penalty="l2", C=1, random_state=1))
svm_clf = OneVsRestClassifier(LinearSVC(C=0.01, loss="hinge", random_state=1))
voting_clf = VotingClassifier(estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)], voting='hard')
voting_clf.fit(X_train, y_train)
# for clf in (log_clf, rnd_clf, svm_clf, voting_clf):
# clf.fit(X_train, y_train)
# ypred = clf.predict(X_test)
# print(clf.__class__.__name__, accuracy_score(y_test, ypred))
y_pred = voting_clf.predict(X_test)
print(accuracy_score(y_test, y_pred))