-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathcounting_numbers.py
54 lines (45 loc) · 1.46 KB
/
counting_numbers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
MOD = 1000000007
# Function to calculate a^b under modulo MOD using binary exponentiation
def power(a, b):
# If b = 0, whatever be the value of a, our result will be 1.
res = 1
while b > 0:
# If b is an odd number, then (a^b) = (a * (a^(b–1)/2)^2)
if b & 1:
res = (res * a) % MOD
# If b is an even number, then (a^b) = ((a^2)^(b/2))
a = (a * a) % MOD
b >>= 1
return res
# Function to check if a number is good
def check(N, A, B):
while N:
# If any digit is neither A nor B, the number is not valid
if N % 10 != A and N % 10 != B:
return False
N //= 10
# All digits are either A or B
return True
def excellentno(A, B, N):
fact = [0] * (N + 1)
inv = [0] * (N + 1)
fact[0] = inv[0] = 1
# Precompute factorials and their inverses
for i in range(1, N + 1):
# Compute factorial
fact[i] = (fact[i - 1] * i) % MOD
# Compute inverse factorial
inv[i] = power(fact[i], MOD - 2)
ans = 0
for i in range(N + 1):
# If the sum of digits is a good number, add the count to the answer
if check(A * i + B * (N - i), A, B):
# Total combinations = N! / (i!(N-i)!) = N! * inv[i] * inv[N-i]
ans = (ans + (fact[N] * inv[i] % MOD * inv[N - i] % MOD)) % MOD
return ans
# Example 1
A, B, N = 1, 2, 2
print(excellentno(A, B, N))
# Example 2
A, B, N = 2, 4, 6
print(excellentno(A, B, N))