-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathFibonacci.py
61 lines (45 loc) · 2.23 KB
/
Fibonacci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
############################## <<< Fibonacci Sequence >>> ########################
###############Iterative approach #############
def fibonacci(n):
fib_sequence = [0, 1]
while len(fib_sequence) < n:
fib_sequence.append(fib_sequence[-1] + fib_sequence[-2])
return fib_sequence[:n]
# Example usage:
n = 10
print(f"Fibonacci sequence up to {n} terms: {fibonacci(n)}")
############### Recursive approach ############
def fibonacci_recursive(n):
# Base case: return the value for the first two numbers (0 and 1)
if n <= 1:
return n
else:
# Recursive case: sum of the two preceding numbers in the sequence
return fibonacci_recursive(n-1) + fibonacci_recursive(n-2)
# Get user input for the number of terms in the Fibonacci sequence
n = int(input("\n" + "Enter the number of terms: "))
# Generate the Fibonacci series by calling the recursive function
fib_series = [fibonacci_recursive(i) for i in range(n)]
# Print the generated Fibonacci series
print(f"Fibonacci series up to {n} terms: {fib_series}")
############### Memoization approach (Top-down dynamic programming) ############
def fibonacci_memo(n, memo={}):
# Define a function to calculate Fibonacci number using memoization.
# `n` is the number for which we want to calculate the Fibonacci value.
# `memo` is a dictionary used to store already computed Fibonacci values.
if n <= 1:
# Base case: if n is 0 or 1, return n as the Fibonacci value.
return n
if n not in memo:
# If the Fibonacci value for n is not already computed and stored in `memo`,
# recursively compute the Fibonacci value for n by calculating the sum of the
# Fibonacci values of (n-1) and (n-2).
memo[n] = fibonacci_memo(n-1, memo) + fibonacci_memo(n-2, memo)
# Return the Fibonacci value of n, either from the memo or the computed value.
return memo[n]
# Example usage:
n = 10
# Generate a list of Fibonacci numbers for the first `n` terms using list comprehension
fib_series = [fibonacci_memo(i) for i in range(n)]
# Print the generated Fibonacci series up to `n` terms
print(f"Fibonacci series using memoization up to {n} terms: {fib_series}")