diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml new file mode 100644 index 000000000..490051876 --- /dev/null +++ b/.github/FUNDING.yml @@ -0,0 +1 @@ +github: iliakan diff --git a/1-js/01-getting-started/1-intro/article.md b/1-js/01-getting-started/1-intro/article.md index f1a084027..0aec7c5db 100644 --- a/1-js/01-getting-started/1-intro/article.md +++ b/1-js/01-getting-started/1-intro/article.md @@ -34,16 +34,26 @@ Yllä luetellut termit on hyvä muistaa, koska niitä käytetään internetin so Moottorit ovat monimutkaisia, mutta perusteet ovat helpot. +<<<<<<< HEAD 1. Moottori (upotettu, jos kyseessä on selain) lukee ("jäsentää") skriptin. 2. Sitten se muuttaa ("kääntää") skriptin konekielelle. 3. Ja sitten konekieli suoritetaan, melko nopeasti. +======= +1. The engine (embedded if it's a browser) reads ("parses") the script. +2. Then it converts ("compiles") the script to machine code. +3. And then the machine code runs, pretty fast. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Moottori käyttää optimointeja prosessin jokaisessa vaiheessa. Se jopa katsoo käännettyä skriptiä sen suorituksen aikana, analysoi sen läpi kulkevaa dataa ja edelleen optimoi sen perusteella konekieltä lisää. ``` ## Mitä JavaScript voi tehdä selaimessa? +<<<<<<< HEAD Nykyaikainen JavaScript on "turvallinen" ohjelmointikieli. Se ei salli matalan tason pääsyä muistiin tai suorittimeen, koska se alunperin suunniteltiin selaimiin, jotka eivät vaadi sitä. +======= +Modern JavaScript is a "safe" programming language. It does not provide low-level access to memory or the CPU, because it was initially created for browsers which do not require it. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 JavaScriptin kyvyt riippuvat suuresti ympäristöstä, jossa sitä ajetaan. Esimerkiksi [Node.js](https://wikipedia.org/wiki/Node.js) tukee funktioita, joiden avulla JavaScript voi lukea/kirjoittaa mielivaltaisia tiedostoja, suorittaa verkkopyyntöjä, jne. @@ -59,7 +69,11 @@ Selaimessa JavaScript voi esimerkiksi: ## Mitä JavaScript EI VOI tehdä selaimessa? +<<<<<<< HEAD JavaScriptin kykyjä selaimessa on rajoitettu käyttäjän turvallisuuden vuoksi. Tavoitteena on estää pahaa nettisivua pääsemästä käsiksi yksityisiin tietoihin tai vahingoittamasta käyttäjän tietoja. +======= +JavaScript's abilities in the browser are limited to protect the user's safety. The aim is to prevent an evil webpage from accessing private information or harming the user's data. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Esimerkkejä tällaisista rajoituksista ovat: @@ -67,6 +81,7 @@ Esimerkkejä tällaisista rajoituksista ovat: Modernit selaimet voivat sallia sen olla tekemisissä tiedostojen kanssa, mutta pääsy on rajoitettu ja sallittu vain, jos käyttäjä toimii tietyllä tavalla, kuten "pudottaa" tiedoston selaimeen tai valitsee sen `` tunnisteen kautta. +<<<<<<< HEAD Kameran tai mikrofonin ja muiden laitteiden kanssa voi olla vuorovaikutuksessa, mutta ne edellyttävät käyttäjän nimenomaista lupaa. Eli sivusto, jossa JavaScript on käytössä, ei voi salaa käyttää webkameraa, tarkkailla ympäristöä ja lähettää tietoja [SUPO](https://fi.wikipedia.org/wiki/Suojelupoliisi):lle. - Välilehdet tai ikkunat eivät lähtökohtaisesti tiedä toisistaan. Joskus ne tietävät, esimerkiksi yhden ikkunan käyttäessä JavaScriptiä toisen ikkunan avaamiseen, mutta tässäkään tapauksessa yhden sivun JavaScript ei pääse käsiksi toiseen sivuun, jos ne ovat peräisin eri sivustoilta (eri verkkotunnus, protokolla tai portti). @@ -78,6 +93,19 @@ Esimerkkejä tällaisista rajoituksista ovat: ![](limitations.svg) Samat rajoitukset eivät koske JavaScriptiä selaimen ulkopuolella, esimerkiksi palvelimella. Nykyaikaisiin selaimiin on myös saatavilla lisäosia tai laajennuksia, joilla on laajemmat käyttöoikeudet. +======= + There are ways to interact with the camera/microphone and other devices, but they require a user's explicit permission. So a JavaScript-enabled page may not sneakily enable a web-camera, observe the surroundings and send the information to the [NSA](https://en.wikipedia.org/wiki/National_Security_Agency). +- Different tabs/windows generally do not know about each other. Sometimes they do, for example when one window uses JavaScript to open the other one. But even in this case, JavaScript from one page may not access the other page if they come from different sites (from a different domain, protocol or port). + + This is called the "Same Origin Policy". To work around that, *both pages* must agree for data exchange and must contain special JavaScript code that handles it. We'll cover that in the tutorial. + + This limitation is, again, for the user's safety. A page from `http://anysite.com` which a user has opened must not be able to access another browser tab with the URL `http://gmail.com`, for example, and steal information from there. +- JavaScript can easily communicate over the net to the server where the current page came from. But its ability to receive data from other sites/domains is crippled. Though possible, it requires explicit agreement (expressed in HTTP headers) from the remote side. Once again, that's a safety limitation. + +![](limitations.svg) + +Such limitations do not exist if JavaScript is used outside of the browser, for example on a server. Modern browsers also allow plugins/extensions which may ask for extended permissions. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ## Mikä tekee JavaScriptistä uniikin? @@ -92,7 +120,11 @@ JavaScript on ainoa selainten teknologia, johon kaikki kolme kohtaa pätevät. Tämä tekee JavaScriptistä uniikin. Tämän takia se on laajimmalle levinnyt selainten käyttöliittymien luontityökalu. +<<<<<<< HEAD Tämän ohella JavaScriptillä voidaan tehdä myös palvelimia, mobiilisovelluksia, jne. +======= +That said, JavaScript can be used to create servers, mobile applications, etc. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ## JavaScriptin päälle luotuja kieliä @@ -100,12 +132,17 @@ JavaScriptin syntaksi ei sovi kaikkien tarpeisiin. Eri ihmiset haluavat eri toim Tämä on oletettavaa, koska kaikki projektit ja niiden vaatimukset ovat erilaisia. +<<<<<<< HEAD Näin ollen viime aikoina on ilmestynyt monia kieliä, jotka muunnetaan JavaScriptiksi ennen niiden suorittamista selaimessa. +======= +So, recently a plethora of new languages appeared, which are *transpiled* (converted) to JavaScript before they run in the browser. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Nykyaikaisten työkalujen avulla muuntaminen on todella nopeaa ja läpinäkyvää ja niiden avulla sovelluskehittäjät voivat kirjoittaa koodia toisella kielellä, joka muunnetaan "kulissien takana" automaattisesti. Esimerkkejä tällaisista kielistä: +<<<<<<< HEAD - [CoffeeScript](http://coffeescript.org/) on niin sanottua syntaksisokeria JavaScriptille. Se mahdollistaa lyhyemmän syntaksin, jonka avulla voidaan kirjoittaa selkeämpää ja tarkempaa koodia. Ruby-devaajat yleensä pitävät siitä. - [TypeScript](http://www.typescriptlang.org/) keskittyy "vahvaan tyypitykseen" yksinkertaistaakseen sovelluskehitystä ja tukeakseen monimutkaisia systeemejä. Sen on kehittänyt Microsoft. - [Flow](http://flow.org/) tuo mukanaan vahvan tyypityksen, mutta eri tavalla. Sen on kehittänyt Facebook. @@ -114,6 +151,16 @@ Esimerkkejä tällaisista kielistä: - [Kotlin](https://kotlinlang.org/docs/reference/js-overview.html) on moderni, tiivis ja turvallinen ohjelmointikieli, joka toimii selaimessa tai Nodessa. Lisääkin esimerkkejä löytyy. Silti, vaikka käytämme jotain muunnettavaa kieltä, meidän on tunnettava JavaScriptiä ymmärtääksemme, mitä todella olemme tekemässä. +======= +- [CoffeeScript](https://coffeescript.org/) is "syntactic sugar" for JavaScript. It introduces shorter syntax, allowing us to write clearer and more precise code. Usually, Ruby devs like it. +- [TypeScript](https://www.typescriptlang.org/) is concentrated on adding "strict data typing" to simplify the development and support of complex systems. It is developed by Microsoft. +- [Flow](https://flow.org/) also adds data typing, but in a different way. Developed by Facebook. +- [Dart](https://www.dartlang.org/) is a standalone language that has its own engine that runs in non-browser environments (like mobile apps), but also can be transpiled to JavaScript. Developed by Google. +- [Brython](https://brython.info/) is a Python transpiler to JavaScript that enables the writing of applications in pure Python without JavaScript. +- [Kotlin](https://kotlinlang.org/docs/reference/js-overview.html) is a modern, concise and safe programming language that can target the browser or Node. + +There are more. Of course, even if we use one of these transpiled languages, we should also know JavaScript to really understand what we're doing. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ## Yhteenveto diff --git a/1-js/01-getting-started/2-manuals-specifications/article.md b/1-js/01-getting-started/2-manuals-specifications/article.md index f8aab00b8..85eb3fca8 100644 --- a/1-js/01-getting-started/2-manuals-specifications/article.md +++ b/1-js/01-getting-started/2-manuals-specifications/article.md @@ -1,7 +1,11 @@ # Oppaat ja määrittelyt +<<<<<<< HEAD Tämä kirja on *tutoriaali*. Sen tavoitteena on auttaa sinua oppimaan kielen asteittain. Kun tunnet perusteet, tarvitset kuitenkin muita lähteitä. +======= +This book is a *tutorial*. It aims to help you gradually learn the language. But once you're familiar with the basics, you'll need other resources. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ## Määrittely @@ -9,7 +13,11 @@ Tämä kirja on *tutoriaali*. Sen tavoitteena on auttaa sinua oppimaan kielen as Koska tieto on niin virallista, se on aluksi vaikeaa ymmärtää. Jos siis tarvitset kaikkein luotettavinta tietoa kielen yksityiskohdista, määrittely on sille oikea paikka. Se ei kuitenkaan ole jokapäiväiseen käyttöön. +<<<<<<< HEAD Uusi määrittely julkaistaan joka vuosi. Julkaisujen välillä uusimman määrittelyn luonnos löytyy osoitteesta . +======= +A new specification version is released every year. Between these releases, the latest specification draft is at . +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Lukeaksesi kaikkein uusimmista toiminnoista, mukaan lukien niistä, jotka ovat "melkein standardisoitu" (niin sanottu "taso 3"), katso "proposals" (suom. ehdotukset) osoitteessa . @@ -19,9 +27,15 @@ Jos kehität selainsovelluksia, tämän tutoriaalin [toisessa osassa](info:brows - **MDN (Mozilla) JavaScript Reference** on tärkein opas, joka sisältää esimerkkejä ja muuta tietoa. Se on hyvä tarkemman tiedon lähde yksittäisille funktioille, metodeille, jne. +<<<<<<< HEAD Opas löytyy osoitteesta . Toisaalta usein on parasta käyttää internethakuja. Käytä vain muotoa "MDN [termi]" hakusanassa, esim. etsiessäsi tietoa `parseInt` funktiosta. +======= + You can find it at . + +Although, it's often best to use an internet search instead. Just use "MDN [term]" in the query, e.g. to search for the `parseInt` function. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ## Yhteensopivuustaulukot @@ -29,9 +43,16 @@ JavaScript on kehittyvä kieli ja uusia toimintoja lisätään säännöllisesti Nähdäksesi niiden yhteensopivuuden eri selainpohjaisissa ja muissa moottoreissa, katso: +<<<<<<< HEAD - - toimintokohtaiset yhteensopivuustaulukot, esim. nähdäksesi, mitkä moottorit ovat yhteensopivia nykyaikaisten salausfunktioiden kanssa: . - - kielen toimintoja ja niiden kanssa yhteensopivia moottoreita sisältävä taulukko Kaikki nämä tietolähteet ovat hyödyllisiä todellisen elämän sovelluskehityksessä, koska ne sisältävät arvokasta tietoa kielen yksityiskohdista, niiden yhteensopivuudesta, jne. +======= +- - per-feature tables of support, e.g. to see which engines support modern cryptography functions: . +- - a table with language features and engines that support those or don't support. + +All these resources are useful in real-life development, as they contain valuable information about language details, their support, etc. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Ne (tai tämä sivu) kannattaa muistaa, kun tarvitset tarkempaa tietoa tietystä toiminnosta. diff --git a/1-js/01-getting-started/3-code-editors/article.md b/1-js/01-getting-started/3-code-editors/article.md index f5c56c569..defb9ebe2 100644 --- a/1-js/01-getting-started/3-code-editors/article.md +++ b/1-js/01-getting-started/3-code-editors/article.md @@ -12,8 +12,13 @@ IDE lataa projektin (joka voi sisältää monia tiedostoja), mahdollistaa navigo Jos et ole vielä valinnut IDE:tä, harkitse seuraavia: +<<<<<<< HEAD - [Visual Studio Code](https://code.visualstudio.com/) (järjestelmäriippumaton, ilmainen). - [WebStorm](http://www.jetbrains.com/webstorm/) (järjestelmäriippumaton, maksullinen). +======= +- [Visual Studio Code](https://code.visualstudio.com/) (cross-platform, free). +- [WebStorm](https://www.jetbrains.com/webstorm/) (cross-platform, paid). +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Windowsille on saatavilla myös "Visual Studio", joka ei ole sama kuin "Visual Studio Code". "Visual Studio" on maksullinen ja mahdikas editori pelkästään Windowsille ja sopii loistavasti .NET-alustalle. Se on hyvä myös JavaScriptille. Saatavilla on myös ilmaisversio [Visual Studio Community](https://www.visualstudio.com/vs/community/). @@ -29,6 +34,7 @@ Olennaisin ero "kevyen editorin" ja "IDE:n" välillä on, että IDE toimii proje Käytännössä kevyihin editoreihin voi olla saatavilla monia lisäosia mukaan lukien sellaisia, jotka tekevät kansiotason syntaksin analysointia tai tarjoavat kirjoitetun tekstin automaattista täydennystä, joten editorityyppien välillä ei ole selkeää rajausta. +<<<<<<< HEAD Seuraavat vaihtoehdot ansaitsevat huomiosi: <<<<<<< HEAD @@ -43,6 +49,13 @@ Seuraavat vaihtoehdot ansaitsevat huomiosi: - [Notepad++](https://notepad-plus-plus.org/) (Windows, free). - [Vim](http://www.vim.org/) and [Emacs](https://www.gnu.org/software/emacs/) are also cool if you know how to use them. >>>>>>> 291b5c05b99452cf8a0d32bd32426926dbcc0ce0 +======= +There are many options, for instance: + +- [Sublime Text](https://www.sublimetext.com/) (cross-platform, shareware). +- [Notepad++](https://notepad-plus-plus.org/) (Windows, free). +- [Vim](https://www.vim.org/) and [Emacs](https://www.gnu.org/software/emacs/) are also cool if you know how to use them. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ## Ei riidellä @@ -50,4 +63,13 @@ Ylle listatut editorit ovat sellaisia, joita minä tai hyvinä ohjelmoijina pit Suuressa maailmassamme on muitakin hyviä editoreja. Valitse se, josta pidät eniten. +<<<<<<< HEAD Editorin, aivan kuten muidenkin työkalujen, valinta on yksilöllinen päätös ja riippuu omista projekteistasi, tavoistasi ja henkilökohtaisista mieltymyksistäsi. +======= +The choice of an editor, like any other tool, is individual and depends on your projects, habits, and personal preferences. + +The author's personal opinion: + +- I'd use [Visual Studio Code](https://code.visualstudio.com/) if I develop mostly frontend. +- Otherwise, if it's mostly another language/platform and partially frontend, then consider other editors, such as XCode (Mac), Visual Studio (Windows) or Jetbrains family (Webstorm, PHPStorm, RubyMine etc, depending on the language). +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 diff --git a/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md b/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md index 38ce858e0..09497a2b2 100644 --- a/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md +++ b/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md @@ -12,13 +12,24 @@ const birthday = '18.04.1982'; const age = someCode(birthday); ``` +<<<<<<< HEAD Meillä on vakiomuuttuja `birthday` päivämäärä ja `age` lasketaan muuttujan `birthday` avulla jonkin koodin avulla (sitä ei ole tässä näkyvillä, koska yksityiskohdilla ei ole tässä kohtaa merkitystä). +======= +Here we have a constant `birthday` for the date, and also the `age` constant. + +The `age` is calculated from `birthday` using `someCode()`, which means a function call that we didn't explain yet (we will soon!), but the details don't matter here, the point is that `age` is calculated somehow based on the `birthday`. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Käyttäisitkö isoja kirjaimia muuttujalle `birthday`? Entä `age`? Tai jopa molemmissa? ```js +<<<<<<< HEAD const BIRTHDAY = '18.04.1982'; // käytä isoja kirjaimia? const AGE = someCode(BIRTHDAY); // käytä isoja kirjaimia? -``` +======= +const BIRTHDAY = '18.04.1982'; // make birthday uppercase? +const AGE = someCode(BIRTHDAY); // make age uppercase? +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 +``` diff --git a/1-js/02-first-steps/04-variables/article.md b/1-js/02-first-steps/04-variables/article.md index 0aa278ca2..eb8f6d338 100644 --- a/1-js/02-first-steps/04-variables/article.md +++ b/1-js/02-first-steps/04-variables/article.md @@ -63,7 +63,12 @@ let age = 25; let message = 'Hello'; ``` +<<<<<<< HEAD Jotkut ihmiset esittelevät useampia muuttujia monella rivillä myös tällaisella tavalla: +======= +Some people also define multiple variables in this multiline style: + +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ```js no-beautify let user = 'John', age = 25, @@ -87,22 +92,37 @@ Vanhemmissa skripteissä saattaa esiintyä myös `var` avainsana `let`:n sijaan: *!*var*/!* message = 'Hello'; ``` +<<<<<<< HEAD Tämä `var` avainsana on *lähes* sama asia kuin `let`. Myös se esittelee muuttujan, mutta vähän erilaisella, "vanhanaikaisella" tavalla. Avainsanojen `let` ja `var` välillä on pieniä eroja, mutta ne eivät vielä vaikuta meihin. Käsittelemme niitä yksityiskohtaisesti kappaleessa . +======= +The `var` keyword is *almost* the same as `let`. It also declares a variable but in a slightly different, "old-school" way. + +There are subtle differences between `let` and `var`, but they do not matter to us yet. We'll cover them in detail in the chapter . +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ```` ## Tosielämän analogia On helpompi ymmärtää "muuttuja" käsite, jos kuvittelemme sen olevan "laatikko" datalle, jossa on uniikki nimitarra. +<<<<<<< HEAD Esimerkiksi muuttuja `message` voidaan kuvitella laatikoksi, joka on merkattu `"message"` tarralla ja jonka sisällä on arvo `"Hello!"`: +======= +For instance, the variable `message` can be imagined as a box labelled `"message"` with the value `"Hello!"` in it: +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ![](variable.svg) Voimme laittaa laatikkoon minkä tahansa arvon. +<<<<<<< HEAD Voimme myös muuttaa sitä niin usein kuin haluamme: +======= +We can also change it as many times as we want: + +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ```js run let message; @@ -148,12 +168,21 @@ let message = "That"; // SyntaxError: 'message' has already been declared Meidän pitää siis esitellä muuttuja kerran ja sen jälkeen viitata siihen ilman `let` avainsanaa. ```` +<<<<<<< HEAD ```smart header="Funktionaaliset kielet" On mielenkiintoista huomata, että on olemassa [funktionaalisia](https://fi.wikipedia.org/wiki/Funktionaalinen_ohjelmointi) ohjelmointikieliä kuten [Scala](http://www.scala-lang.org/) tai [Erlang](http://www.erlang.org/), jotka kieltävät muuttujien arvojen muuttamisen. +======= +```smart header="Functional languages" +It's interesting to note that there exist so-called [pure functional](https://en.wikipedia.org/wiki/Purely_functional_programming) programming languages, such as [Haskell](https://en.wikipedia.org/wiki/Haskell), that forbid changing variable values. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Tällaisissa kielissä "laatikkoon" varastoitu arvo on siellä ikuisesti. Jos meidän täytyy varastoida jotain muuta, kieli pakottaa meidät luomaan uuden laatikon (esittelemään uuden muuttujan). Vanhaa ei voida käyttää uudelleen. +<<<<<<< HEAD Vaikka tämä vaikuttaisi ensinäkemältä vähän oudolta, nämä kielet kykenevät hyvin vakavaan sovelluskehitykseen. Lisäksi on olemassa alueita, kuten rinnakkaislaskelmia, joilla tämä rajoitus tuo tiettyjä etuja. Tällaisen kielen opiskelu (vaikka et aio käyttää sitä pian) on suositeltavaa mielesi laajentamiseksi. +======= +Though it may seem a little odd at first sight, these languages are quite capable of serious development. More than that, there are areas like parallel computations where this limitation confers certain benefits. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ``` ## Muuttujien nimeäminen [#variable-naming] @@ -191,19 +220,32 @@ let 1a; // ei voi alkaa numerolla let my-name; // viivoja '-' ei sallita ``` +<<<<<<< HEAD ```smart header="Kirjainkoolla on merkitystä" Muuttujat `apple` ja `AppLE` ovat kaksi eri muuttujaa. ``` ````smart header="Ei-latinalaiset kirjaimet ovat myös sallittuja, mutta niitä ei suositella" On mahdollista käyttää mitä tahansa kieltä, mukaanlukien kyrilliset aakkoset ja jopa hieroglyfit, tähän tapaan: +======= +```smart header="Case matters" +Variables named `apple` and `APPLE` are two different variables. +``` + +````smart header="Non-Latin letters are allowed, but not recommended" +It is possible to use any language, including Cyrillic letters, Chinese logograms and so on, like this: +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ```js let имя = '...'; let 我 = '...'; ``` +<<<<<<< HEAD Periaattessa tässä ei ole virhettä. Tällaiset nimet ovat sallittuja, mutta kansainvälinen tapa on käyttää englantia muuttujien nimissä. Myös pienissä skripteissä, niillä voi olla pitkä elämä. Muista maista tulevien ihmisten on ehkä luettava sitä joskus. +======= +Technically, there is no error here. Such names are allowed, but there is an international convention to use English in variable names. Even if we're writing a small script, it may have a long life ahead. People from other countries may need to read it sometime. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ```` ````warn header="Varatut nimet" @@ -258,12 +300,20 @@ const myBirthday = '18.04.1982'; myBirthday = '01.01.2001'; // Error, can't reassign the constant! ``` +<<<<<<< HEAD Kun ohjelmoija on varma, ettei muuttuja koskaan muutu, se voidaan esitellä `const` avainsanalla, jolloin varmistutaan arvon pysyvyydestä ja se saadaan kommunikoitua kaikille. +======= +When a programmer is sure that a variable will never change, they can declare it with `const` to guarantee and communicate that fact to everyone. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ### Isokirjaimiset vakiomuuttujat +<<<<<<< HEAD Laajalle levinnyt käytäntö on käyttää vakiomuuttujia korvaamaan vaikeasti muistettavia arvoja, jotka tunnetaan ennen koodin suorittamista. +======= +There is a widespread practice to use constants as aliases for difficult-to-remember values that are known before execution. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Tällaiset vakiot kirjoitetaan suurten kirjainten ja alaviivojen avulla. @@ -288,16 +338,29 @@ Hyödyt: Milloin käytämme suuria kirjaimia ja milloin nimeämme vakiot normaalisti? Tehdään siitä selvää. +<<<<<<< HEAD Termillä "vakio" tarkoitetaan vain sitä, että muuttujan arvo ei koskaan muutu. On kuitenkin vakioita, jotka tunnetaan ennen koodin suoritusta (kuten värin punainen heksadesimaaliarvo) ja vakioita, jotka *lasketaan* koodin suorituksen aikana, mutta ne eivät muutu ensimmäisen arvon sijoituksen jälkeen. Esimerkiksi: +======= +Being a "constant" just means that a variable's value never changes. But some constants are known before execution (like a hexadecimal value for red) and some constants are *calculated* in run-time, during the execution, but do not change after their initial assignment. + +For instance: + +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ```js const pageLoadTime = /* aika, joka kuluu nettisivun lataamiseen */; ``` +<<<<<<< HEAD Muuttujan `pageLoadTime` arvoa ei tunneta ennen sivun lataamista, joten se kirjoitetaan normaalisti. Se on silti vakio, koska sen arvo ei muutu sijoittamisen jälkeen. Toisin sanoen, suuria kirjaimia käytetään vain vakiomuuttujissa, joilla on "kovakoodattu" arvo. +======= +The value of `pageLoadTime` is not known before the page load, so it's named normally. But it's still a constant because it doesn't change after the assignment. + +In other words, capital-named constants are only used as aliases for "hard-coded" values. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 ## Oikeaoppinen nimeäminen @@ -305,18 +368,31 @@ Muuttujista puhuttaessa on vielä yksi erittäin tärkeä asia. Nimellä pitäisi olla selkeä, itsestäänselvä tarkoitus, joka kuvaa sen varastoimaa dataa. +<<<<<<< HEAD Muuttujien nimeäminen on yksi tärkeimmistä ja vaikeimmista taidoista ohjelmoinnissa. Nopea muuttujien nimien vilkaisu voi paljastaa, minkä koodin on kirjoittanut aloittelija ja minkä kokenut sovelluskehittäjä. Oikeassa projektissa suurin osa ajasta käytetään olemassa olevan koodin muokkaamiseen ja jatkamiseen sen sijaan, että kirjoitettaisiin jotain täysin tyhjästä. Kun palaamme koodin ääreen tehtyämme jotain muuta vähän aikaa, on paljon helpompi löytää tietoa, joka on merkitty hyvin. Toisin sanoen, kun muuttujilla on hyvät nimet. +======= +Variable naming is one of the most important and complex skills in programming. A glance at variable names can reveal which code was written by a beginner versus an experienced developer. + +In a real project, most of the time is spent modifying and extending an existing code base rather than writing something completely separate from scratch. When we return to some code after doing something else for a while, it's much easier to find information that is well-labelled. Or, in other words, when the variables have good names. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Käytäthän aikaa hyvän muuttujan nimen keksimiseen ennen kuin esittelet sen. Tämä maksaa itsensä takaisin komeasti. Muutamia hyviä sääntöjä: +<<<<<<< HEAD - Käytä nimiä, jotka ihminen ymmärtää kuten `userName` tai `shoppingCart`. - Vältä lyhenteitä ja lyhyitä nimiä kuten `a`, `b`, `c`, jollet todella tiedä mitä olet tekemässä. - Tee nimistä maksimaalisen kuvaavia ja tiiviitä. Esimerkkejä huonoista nimistä ovat `data` ja `value`. Tällaiset nimet eivät kerro mitään. Niiden käyttäminen on okei vain silloin, kun koodin konteksti tekee erityisen itsestäänselväksi, mistä datasta ja arvosta on kyse. - Sovi ehdoista tiimisi kesken ja omassa mielessäsi. Jos sivuston nykyinen käyttäjä on "user", siihen liittyville muuttujille annetaan nimeksi `currentUser` tai `newUser` sen sijaan, että käytetään nimiä `currentVisitor` tai `newManInTown`. +======= +- Use human-readable names like `userName` or `shoppingCart`. +- Stay away from abbreviations or short names like `a`, `b`, and `c`, unless you know what you're doing. +- Make names maximally descriptive and concise. Examples of bad names are `data` and `value`. Such names say nothing. It's only okay to use them if the context of the code makes it exceptionally obvious which data or value the variable is referencing. +- Agree on terms within your team and in your mind. If a site visitor is called a "user" then we should name related variables `currentUser` or `newUser` instead of `currentVisitor` or `newManInTown`. +>>>>>>> 035c5267ba80fa7b55878f7213cbde449b4092d9 Kuulostaa yksinkertaiselle? Se todellakin on, mutta kuvaavien ja tiiviiden muuttujien nimien keksiminen käytännössä ei ole helppoa. Anna palaa. diff --git a/1-js/02-first-steps/05-types/article.md b/1-js/02-first-steps/05-types/article.md index 57e08c3ff..04e8b2450 100644 --- a/1-js/02-first-steps/05-types/article.md +++ b/1-js/02-first-steps/05-types/article.md @@ -68,9 +68,20 @@ We'll see more about working with numbers in the chapter . ## BigInt [#bigint-type] -In JavaScript, the "number" type cannot represent integer values larger than (253-1) (that's `9007199254740991`), or less than -(253-1) for negatives. It's a technical limitation caused by their internal representation. +In JavaScript, the "number" type cannot safely represent integer values larger than (253-1) (that's `9007199254740991`), or less than -(253-1) for negatives. -For most purposes that's quite enough, but sometimes we need really big numbers, e.g. for cryptography or microsecond-precision timestamps. +To be really precise, the "number" type can store larger integers (up to 1.7976931348623157 * 10308), but outside of the safe integer range ±(253-1) there'll be a precision error, because not all digits fit into the fixed 64-bit storage. So an "approximate" value may be stored. + +For example, these two numbers (right above the safe range) are the same: + +```js +console.log(9007199254740991 + 1); // 9007199254740992 +console.log(9007199254740991 + 2); // 9007199254740992 +``` + +So to say, all odd integers greater than (253-1) can't be stored at all in the "number" type. + +For most purposes ±(253-1) range is quite enough, but sometimes we need the entire range of really big integers, e.g. for cryptography or microsecond-precision timestamps. `BigInt` type was recently added to the language to represent integers of arbitrary length. @@ -83,13 +94,6 @@ const bigInt = 1234567890123456789012345678901234567890n; As `BigInt` numbers are rarely needed, we don't cover them here, but devoted them a separate chapter . Read it when you need such big numbers. - -```smart header="Compatibility issues" -Right now, `BigInt` is supported in Firefox/Chrome/Edge/Safari, but not in IE. -``` - -You can check [*MDN* BigInt compatibility table](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) to know which versions of a browser are supported. - ## String A string in JavaScript must be surrounded by quotes. @@ -213,7 +217,7 @@ The `symbol` type is used to create unique identifiers for objects. We have to m ## The typeof operator [#type-typeof] -The `typeof` operator returns the type of the argument. It's useful when we want to process values of different types differently or just want to do a quick check. +The `typeof` operator returns the type of the operand. It's useful when we want to process values of different types differently or just want to do a quick check. A call to `typeof x` returns a string with the type name: @@ -263,14 +267,16 @@ Some people prefer `typeof(x)`, although the `typeof x` syntax is much more comm There are 8 basic data types in JavaScript. -- `number` for numbers of any kind: integer or floating-point, integers are limited by ±(253-1). -- `bigint` is for integer numbers of arbitrary length. -- `string` for strings. A string may have zero or more characters, there's no separate single-character type. -- `boolean` for `true`/`false`. -- `null` for unknown values -- a standalone type that has a single value `null`. -- `undefined` for unassigned values -- a standalone type that has a single value `undefined`. -- `object` for more complex data structures. -- `symbol` for unique identifiers. +- Seven primitive data types: + - `number` for numbers of any kind: integer or floating-point, integers are limited by ±(253-1). + - `bigint` for integer numbers of arbitrary length. + - `string` for strings. A string may have zero or more characters, there's no separate single-character type. + - `boolean` for `true`/`false`. + - `null` for unknown values -- a standalone type that has a single value `null`. + - `undefined` for unassigned values -- a standalone type that has a single value `undefined`. + - `symbol` for unique identifiers. +- And one non-primitive data type: + - `object` for more complex data structures. The `typeof` operator allows us to see which type is stored in a variable. diff --git a/1-js/02-first-steps/07-type-conversions/article.md b/1-js/02-first-steps/07-type-conversions/article.md index e92e97c80..329556141 100644 --- a/1-js/02-first-steps/07-type-conversions/article.md +++ b/1-js/02-first-steps/07-type-conversions/article.md @@ -34,7 +34,7 @@ String conversion is mostly obvious. A `false` becomes `"false"`, `null` becomes ## Numeric Conversion -Numeric conversion happens in mathematical functions and expressions automatically. +Numeric conversion in mathematical functions and expressions happens automatically. For example, when division `/` is applied to non-numbers: @@ -70,7 +70,7 @@ Numeric conversion rules: |`undefined`|`NaN`| |`null`|`0`| |true and false | `1` and `0` | -| `string` | Whitespaces from the start and end are removed. If the remaining string is empty, the result is `0`. Otherwise, the number is "read" from the string. An error gives `NaN`. | +| `string` | Whitespaces (includes spaces, tabs `\t`, newlines `\n` etc.) from the start and end are removed. If the remaining string is empty, the result is `0`. Otherwise, the number is "read" from the string. An error gives `NaN`. | Examples: @@ -130,7 +130,7 @@ The conversion follows the rules: |`undefined`|`NaN`| |`null`|`0`| |true / false | `1 / 0` | -| `string` | The string is read "as is", whitespaces from both sides are ignored. An empty string becomes `0`. An error gives `NaN`. | +| `string` | The string is read "as is", whitespaces (includes spaces, tabs `\t`, newlines `\n` etc.) from both sides are ignored. An empty string becomes `0`. An error gives `NaN`. | **`Boolean Conversion`** -- Occurs in logical operations. Can be performed with `Boolean(value)`. diff --git a/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md index dfd061cb6..7370b66af 100644 --- a/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md +++ b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md @@ -22,4 +22,4 @@ undefined + 1 = NaN // (6) 4. The subtraction always converts to numbers, so it makes `" -9 "` a number `-9` (ignoring spaces around it). 5. `null` becomes `0` after the numeric conversion. 6. `undefined` becomes `NaN` after the numeric conversion. -7. Space characters, are trimmed off string start and end when a string is converted to a number. Here the whole string consists of space characters, such as `\t`, `\n` and a "regular" space between them. So, similarly to an empty string, it becomes `0`. +7. Space characters are trimmed off string start and end when a string is converted to a number. Here the whole string consists of space characters, such as `\t`, `\n` and a "regular" space between them. So, similarly to an empty string, it becomes `0`. diff --git a/1-js/02-first-steps/08-operators/article.md b/1-js/02-first-steps/08-operators/article.md index fbf2cbf9a..d52c37a17 100644 --- a/1-js/02-first-steps/08-operators/article.md +++ b/1-js/02-first-steps/08-operators/article.md @@ -50,8 +50,9 @@ The result of `a % b` is the [remainder](https://en.wikipedia.org/wiki/Remainder For instance: ```js run -alert( 5 % 2 ); // 1, a remainder of 5 divided by 2 -alert( 8 % 3 ); // 2, a remainder of 8 divided by 3 +alert( 5 % 2 ); // 1, the remainder of 5 divided by 2 +alert( 8 % 3 ); // 2, the remainder of 8 divided by 3 +alert( 8 % 4 ); // 0, the remainder of 8 divided by 4 ``` ### Exponentiation ** @@ -68,7 +69,7 @@ alert( 2 ** 3 ); // 2³ = 8 alert( 2 ** 4 ); // 2⁴ = 16 ``` -Just like in maths, the exponentiation operator is defined for non-integer numbers as well. +Just like in maths, the exponentiation operator is defined for non-integer numbers as well. For example, a square root is an exponentiation by ½: @@ -80,7 +81,7 @@ alert( 8 ** (1/3) ); // 2 (power of 1/3 is the same as a cubic root) ## String concatenation with binary + -Let's meet features of JavaScript operators that are beyond school arithmetics. +Let's meet the features of JavaScript operators that are beyond school arithmetics. Usually, the plus operator `+` sums numbers. @@ -194,18 +195,18 @@ Here's an extract from the [precedence table](https://developer.mozilla.org/en-U | Precedence | Name | Sign | |------------|------|------| | ... | ... | ... | -| 15 | unary plus | `+` | -| 15 | unary negation | `-` | -| 14 | exponentiation | `**` | -| 13 | multiplication | `*` | -| 13 | division | `/` | -| 12 | addition | `+` | -| 12 | subtraction | `-` | +| 14 | unary plus | `+` | +| 14 | unary negation | `-` | +| 13 | exponentiation | `**` | +| 12 | multiplication | `*` | +| 12 | division | `/` | +| 11 | addition | `+` | +| 11 | subtraction | `-` | | ... | ... | ... | | 2 | assignment | `=` | | ... | ... | ... | -As we can see, the "unary plus" has a priority of `15` which is higher than the `12` of "addition" (binary plus). That's why, in the expression `"+apples + +oranges"`, unary pluses work before the addition. +As we can see, the "unary plus" has a priority of `14` which is higher than the `11` of "addition" (binary plus). That's why, in the expression `"+apples + +oranges"`, unary pluses work before the addition. ## Assignment @@ -303,9 +304,9 @@ Such operators have the same precedence as a normal assignment, so they run afte ```js run let n = 2; -n *= 3 + 5; +n *= 3 + 5; // right part evaluated first, same as n *= 8 -alert( n ); // 16 (right part evaluated first, same as n *= 8) +alert( n ); // 16 ``` ## Increment/decrement diff --git a/1-js/02-first-steps/10-ifelse/article.md b/1-js/02-first-steps/10-ifelse/article.md index 51514062f..82e8800b9 100644 --- a/1-js/02-first-steps/10-ifelse/article.md +++ b/1-js/02-first-steps/10-ifelse/article.md @@ -68,7 +68,7 @@ if (cond) { ## The "else" clause -The `if` statement may contain an optional "else" block. It executes when the condition is falsy. +The `if` statement may contain an optional `else` block. It executes when the condition is falsy. For example: ```js run @@ -181,9 +181,9 @@ alert( message ); It may be difficult at first to grasp what's going on. But after a closer look, we can see that it's just an ordinary sequence of tests: 1. The first question mark checks whether `age < 3`. -2. If true -- it returns `'Hi, baby!'`. Otherwise, it continues to the expression after the colon '":"', checking `age < 18`. -3. If that's true -- it returns `'Hello!'`. Otherwise, it continues to the expression after the next colon '":"', checking `age < 100`. -4. If that's true -- it returns `'Greetings!'`. Otherwise, it continues to the expression after the last colon '":"', returning `'What an unusual age!'`. +2. If true -- it returns `'Hi, baby!'`. Otherwise, it continues to the expression after the colon ":", checking `age < 18`. +3. If that's true -- it returns `'Hello!'`. Otherwise, it continues to the expression after the next colon ":", checking `age < 100`. +4. If that's true -- it returns `'Greetings!'`. Otherwise, it continues to the expression after the last colon ":", returning `'What an unusual age!'`. Here's how this looks using `if..else`: diff --git a/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md b/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md index 5c2455ef4..368b59409 100644 --- a/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md +++ b/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md @@ -1,6 +1,6 @@ The answer: `null`, because it's the first falsy value from the list. ```js run -alert( 1 && null && 2 ); +alert(1 && null && 2); ``` diff --git a/1-js/02-first-steps/12-nullish-coalescing-operator/article.md b/1-js/02-first-steps/12-nullish-coalescing-operator/article.md index 2d046aa90..0b2f092ab 100644 --- a/1-js/02-first-steps/12-nullish-coalescing-operator/article.md +++ b/1-js/02-first-steps/12-nullish-coalescing-operator/article.md @@ -29,7 +29,7 @@ For example, here we show `user` if its value isn't `null/undefined`, otherwise ```js run let user; -alert(user ?? "Anonymous"); // Anonymous (user not defined) +alert(user ?? "Anonymous"); // Anonymous (user is undefined) ``` Here's the example with `user` assigned to a name: @@ -37,7 +37,7 @@ Here's the example with `user` assigned to a name: ```js run let user = "John"; -alert(user ?? "Anonymous"); // John (user defined) +alert(user ?? "Anonymous"); // John (user is not null/undefined) ``` We can also use a sequence of `??` to select the first value from a list that isn't `null/undefined`. @@ -76,7 +76,7 @@ alert(firstName || lastName || nickName || "Anonymous"); // Supercoder */!* ``` -Historically, the OR `||` operator was there first. It exists since the beginning of JavaScript, so developers were using it for such purposes for a long time. +Historically, the OR `||` operator was there first. It's been there since the beginning of JavaScript, so developers were using it for such purposes for a long time. On the other hand, the nullish coalescing operator `??` was added to JavaScript only recently, and the reason for that was that people weren't quite happy with `||`. @@ -106,7 +106,7 @@ In practice, the zero height is often a valid value, that shouldn't be replaced ## Precedence -The precedence of the `??` operator is the same as `||`. They both equal `4` in the [MDN table](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#Table). +The precedence of the `??` operator is the same as `||`. They both equal `3` in the [MDN table](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#Table). That means that, just like `||`, the nullish coalescing operator `??` is evaluated before `=` and `?`, but after most other operations, such as `+`, `*`. diff --git a/1-js/02-first-steps/13-while-for/article.md b/1-js/02-first-steps/13-while-for/article.md index a7a211569..d1b749888 100644 --- a/1-js/02-first-steps/13-while-for/article.md +++ b/1-js/02-first-steps/13-while-for/article.md @@ -6,6 +6,19 @@ For example, outputting goods from a list one after another or just running the *Loops* are a way to repeat the same code multiple times. +```smart header="The for..of and for..in loops" +A small announcement for advanced readers. + +This article covers only basic loops: `while`, `do..while` and `for(..;..;..)`. + +If you came to this article searching for other types of loops, here are the pointers: + +- See [for..in](info:object#forin) to loop over object properties. +- See [for..of](info:array#loops) and [iterables](info:iterable) for looping over arrays and iterable objects. + +Otherwise, please read on. +``` + ## The "while" loop The `while` loop has the following syntax: @@ -162,10 +175,8 @@ for (i = 0; i < 3; i++) { // use an existing variable alert(i); // 3, visible, because declared outside of the loop ``` - ```` - ### Skipping parts Any part of `for` can be skipped. @@ -268,7 +279,7 @@ for (let i = 0; i < 10; i++) { From a technical point of view, this is identical to the example above. Surely, we can just wrap the code in an `if` block instead of using `continue`. -But as a side-effect, this created one more level of nesting (the `alert` call inside the curly braces). If the code inside of `if` is longer than a few lines, that may decrease the overall readability. +But as a side effect, this created one more level of nesting (the `alert` call inside the curly braces). If the code inside of `if` is longer than a few lines, that may decrease the overall readability. ```` ````warn header="No `break/continue` to the right side of '?'" @@ -286,7 +297,6 @@ if (i > 5) { ...and rewrite it using a question mark: - ```js no-beautify (i > 5) ? alert(i) : *!*continue*/!*; // continue isn't allowed here ``` @@ -321,6 +331,7 @@ We need a way to stop the process if the user cancels the input. The ordinary `break` after `input` would only break the inner loop. That's not sufficient -- labels, come to the rescue! A *label* is an identifier with a colon before a loop: + ```js labelName: for (...) { ... @@ -342,6 +353,7 @@ The `break ` statement in the loop below breaks out to the label: // do something with the value... } } + alert('Done!'); ``` @@ -362,6 +374,7 @@ The `continue` directive can also be used with a label. In this case, code execu Labels do not allow us to jump into an arbitrary place in the code. For example, it is impossible to do this: + ```js break label; // jump to the label below (doesn't work) @@ -369,6 +382,7 @@ label: for (...) ``` A `break` directive must be inside a code block. Technically, any labelled code block will do, e.g.: + ```js label: { // ... diff --git a/1-js/02-first-steps/14-switch/article.md b/1-js/02-first-steps/14-switch/article.md index effdafcf9..d86babcec 100644 --- a/1-js/02-first-steps/14-switch/article.md +++ b/1-js/02-first-steps/14-switch/article.md @@ -139,7 +139,7 @@ switch (a) { Now both `3` and `5` show the same message. -The ability to "group" cases is a side-effect of how `switch/case` works without `break`. Here the execution of `case 3` starts from the line `(*)` and goes through `case 5`, because there's no `break`. +The ability to "group" cases is a side effect of how `switch/case` works without `break`. Here the execution of `case 3` starts from the line `(*)` and goes through `case 5`, because there's no `break`. ## Type matters diff --git a/1-js/02-first-steps/15-function-basics/article.md b/1-js/02-first-steps/15-function-basics/article.md index 262dff809..415fed3e0 100644 --- a/1-js/02-first-steps/15-function-basics/article.md +++ b/1-js/02-first-steps/15-function-basics/article.md @@ -24,7 +24,7 @@ The `function` keyword goes first, then goes the *name of the function*, then a ```js function name(parameter1, parameter2, ... parameterN) { - ...body... + // body } ``` @@ -206,7 +206,13 @@ function showMessage(from, *!*text = "no text given"*/!*) { showMessage("Ann"); // Ann: no text given ``` -Now if the `text` parameter is not passed, it will get the value `"no text given"` +Now if the `text` parameter is not passed, it will get the value `"no text given"`. + +The default value also jumps in if the parameter exists, but strictly equals `undefined`, like this: + +```js +showMessage("Ann", undefined); // Ann: no text given +``` Here `"no text given"` is a string, but it can be a more complex expression, which is only evaluated and assigned if the parameter is missing. So, this is also possible: @@ -259,7 +265,7 @@ function showMessage(from, text) { ### Alternative default parameters -Sometimes it makes sense to assign default values for parameters not in the function declaration, but at a later stage. +Sometimes it makes sense to assign default values for parameters at a later stage after the function declaration. We can check if the parameter is passed during the function execution, by comparing it with `undefined`: @@ -454,7 +460,7 @@ These examples assume common meanings of prefixes. You and your team are free to ```smart header="Ultrashort function names" Functions that are used *very often* sometimes have ultrashort names. -For example, the [jQuery](http://jquery.com) framework defines a function with `$`. The [Lodash](http://lodash.com/) library has its core function named `_`. +For example, the [jQuery](https://jquery.com/) framework defines a function with `$`. The [Lodash](https://lodash.com/) library has its core function named `_`. These are exceptions. Generally function names should be concise and descriptive. ``` @@ -522,7 +528,7 @@ function name(parameters, delimited, by, comma) { To make the code clean and easy to understand, it's recommended to use mainly local variables and parameters in the function, not outer variables. -It is always easier to understand a function which gets parameters, works with them and returns a result than a function which gets no parameters, but modifies outer variables as a side-effect. +It is always easier to understand a function which gets parameters, works with them and returns a result than a function which gets no parameters, but modifies outer variables as a side effect. Function naming: diff --git a/1-js/02-first-steps/16-function-expressions/article.md b/1-js/02-first-steps/16-function-expressions/article.md index 0135cf1cb..c6dd891bd 100644 --- a/1-js/02-first-steps/16-function-expressions/article.md +++ b/1-js/02-first-steps/16-function-expressions/article.md @@ -82,7 +82,7 @@ let sayHi = function() { // (1) create alert( "Hello" ); }; -let func = sayHi; +let func = sayHi; //(2) // ... ``` @@ -90,7 +90,7 @@ Everything would work the same. ````smart header="Why is there a semicolon at the end?" -You might wonder, why does Function Expression have a semicolon `;` at the end, but Function Declaration does not: +You might wonder, why do Function Expressions have a semicolon `;` at the end, but Function Declarations do not: ```js function sayHi() { @@ -144,13 +144,13 @@ function showCancel() { ask("Do you agree?", showOk, showCancel); ``` -In practice, such functions are quite useful. The major difference between a real-life `ask` and the example above is that real-life functions use more complex ways to interact with the user than a simple `confirm`. In the browser, such function usually draws a nice-looking question window. But that's another story. +In practice, such functions are quite useful. The major difference between a real-life `ask` and the example above is that real-life functions use more complex ways to interact with the user than a simple `confirm`. In the browser, such functions usually draw a nice-looking question window. But that's another story. **The arguments `showOk` and `showCancel` of `ask` are called *callback functions* or just *callbacks*.** The idea is that we pass a function and expect it to be "called back" later if necessary. In our case, `showOk` becomes the callback for "yes" answer, and `showCancel` for "no" answer. -We can use Function Expressions to write the same function much shorter: +We can use Function Expressions to write an equivalent, shorter function: ```js run no-beautify function ask(question, yes, no) { @@ -186,7 +186,7 @@ Let's formulate the key differences between Function Declarations and Expression First, the syntax: how to differentiate between them in the code. -- *Function Declaration:* a function, declared as a separate statement, in the main code flow. +- *Function Declaration:* a function, declared as a separate statement, in the main code flow: ```js // Function Declaration @@ -360,7 +360,7 @@ welcome(); // ok now ```smart header="When to choose Function Declaration versus Function Expression?" -As a rule of thumb, when we need to declare a function, the first to consider is Function Declaration syntax. It gives more freedom in how to organize our code, because we can call such functions before they are declared. +As a rule of thumb, when we need to declare a function, the first thing to consider is Function Declaration syntax. It gives more freedom in how to organize our code, because we can call such functions before they are declared. That's also better for readability, as it's easier to look up `function f(…) {…}` in the code than `let f = function(…) {…};`. Function Declarations are more "eye-catching". diff --git a/1-js/02-first-steps/18-javascript-specials/article.md b/1-js/02-first-steps/18-javascript-specials/article.md index a4d05e12f..e7ddacac4 100644 --- a/1-js/02-first-steps/18-javascript-specials/article.md +++ b/1-js/02-first-steps/18-javascript-specials/article.md @@ -55,7 +55,7 @@ To fully enable all features of modern JavaScript, we should start scripts with The directive must be at the top of a script or at the beginning of a function body. -Without `"use strict"`, everything still works, but some features behave in the old-fashion, "compatible" way. We'd generally prefer the modern behavior. +Without `"use strict"`, everything still works, but some features behave in the old-fashioned, "compatible" way. We'd generally prefer the modern behavior. Some modern features of the language (like classes that we'll study in the future) enable strict mode implicitly. @@ -103,13 +103,13 @@ More in: and . We're using a browser as a working environment, so basic UI functions will be: -[`prompt(question, [default])`](mdn:api/Window/prompt) +[`prompt(question, [default])`](https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt) : Ask a `question`, and return either what the visitor entered or `null` if they clicked "cancel". -[`confirm(question)`](mdn:api/Window/confirm) +[`confirm(question)`](https://developer.mozilla.org/en-US/docs/Web/API/Window/confirm) : Ask a `question` and suggest to choose between Ok and Cancel. The choice is returned as `true/false`. -[`alert(message)`](mdn:api/Window/alert) +[`alert(message)`](https://developer.mozilla.org/en-US/docs/Web/API/Window/alert) : Output a `message`. All these functions are *modal*, they pause the code execution and prevent the visitor from interacting with the page until they answer. @@ -144,7 +144,7 @@ Assignments : There is a simple assignment: `a = b` and combined ones like `a *= 2`. Bitwise -: Bitwise operators work with 32-bit integers at the lowest, bit-level: see the [docs](mdn:/JavaScript/Guide/Expressions_and_Operators#Bitwise) when they are needed. +: Bitwise operators work with 32-bit integers at the lowest, bit-level: see the [docs](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#bitwise_operators) when they are needed. Conditional : The only operator with three parameters: `cond ? resultA : resultB`. If `cond` is truthy, returns `resultA`, otherwise `resultB`. diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg index a3c7db6ec..5fc6dce3a 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg @@ -1 +1 @@ -open sources \ No newline at end of file +open sources \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg index 6e7b60f85..63bf4966e 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg @@ -1 +1 @@ -here's the listbreakpoints \ No newline at end of file +here's the listbreakpoints \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg index d5d2a0b93..3fe5f124f 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg index 83468fddb..0147c2e0a 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg @@ -1 +1 @@ -213see the outer call detailswatch expressionscurrent variables \ No newline at end of file +213see the outer call detailswatch expressionscurrent variables \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg index 23937e0d6..9fa1b3b8c 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg @@ -1 +1 @@ -nested calls \ No newline at end of file +nested calls \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg index 41a3d8784..016708256 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg @@ -1 +1 @@ -213 \ No newline at end of file +213 \ No newline at end of file diff --git a/1-js/03-code-quality/02-coding-style/code-style.svg b/1-js/03-code-quality/02-coding-style/code-style.svg index 12a755c97..739d9f1ed 100644 --- a/1-js/03-code-quality/02-coding-style/code-style.svg +++ b/1-js/03-code-quality/02-coding-style/code-style.svg @@ -1 +1 @@ -2No space between the function name and parentheses between the parentheses and the parameterIndentation 2 spacesA space after for/if/while…} else { without a line breakSpaces around a nested callAn empty line between logical blocksLines are not very longA semicolon ; is mandatorySpaces around operatorsCurly brace { on the same line, after a spaceA space between argumentsA space between parameters \ No newline at end of file +2No space between the function name and parentheses between the parentheses and the parameterIndentation 2 spacesA space after for/if/while…} else { without a line breakSpaces around a nested callAn empty line between logical blocksLines are not very longA semicolon ; is mandatorySpaces around operatorsCurly brace { on the same line, after a spaceA space between argumentsA space between parameters \ No newline at end of file diff --git a/1-js/03-code-quality/03-comments/article.md b/1-js/03-code-quality/03-comments/article.md index 0d11c6c52..af3a06c80 100644 --- a/1-js/03-code-quality/03-comments/article.md +++ b/1-js/03-code-quality/03-comments/article.md @@ -143,7 +143,7 @@ Such comments allow us to understand the purpose of the function and use it the By the way, many editors like [WebStorm](https://www.jetbrains.com/webstorm/) can understand them as well and use them to provide autocomplete and some automatic code-checking. -Also, there are tools like [JSDoc 3](https://github.com/jsdoc3/jsdoc) that can generate HTML-documentation from the comments. You can read more information about JSDoc at . +Also, there are tools like [JSDoc 3](https://github.com/jsdoc/jsdoc) that can generate HTML-documentation from the comments. You can read more information about JSDoc at . Why is the task solved this way? : What's written is important. But what's *not* written may be even more important to understand what's going on. Why is the task solved exactly this way? The code gives no answer. diff --git a/1-js/03-code-quality/05-testing-mocha/article.md b/1-js/03-code-quality/05-testing-mocha/article.md index 9037b484d..4c2b1aa5e 100644 --- a/1-js/03-code-quality/05-testing-mocha/article.md +++ b/1-js/03-code-quality/05-testing-mocha/article.md @@ -51,7 +51,7 @@ describe("pow", function() { A spec has three main building blocks that you can see above: `describe("title", function() { ... })` -: What functionality we're describing. In our case we're describing the function `pow`. Used to group "workers" -- the `it` blocks. +: What functionality we're describing? In our case we're describing the function `pow`. Used to group "workers" -- the `it` blocks. `it("use case description", function() { ... })` : In the title of `it` we *in a human-readable way* describe the particular use case, and the second argument is a function that tests it. @@ -69,7 +69,7 @@ The flow of development usually looks like this: 1. An initial spec is written, with tests for the most basic functionality. 2. An initial implementation is created. -3. To check whether it works, we run the testing framework [Mocha](http://mochajs.org/) (more details soon) that runs the spec. While the functionality is not complete, errors are displayed. We make corrections until everything works. +3. To check whether it works, we run the testing framework [Mocha](https://mochajs.org/) (more details soon) that runs the spec. While the functionality is not complete, errors are displayed. We make corrections until everything works. 4. Now we have a working initial implementation with tests. 5. We add more use cases to the spec, probably not yet supported by the implementations. Tests start to fail. 6. Go to 3, update the implementation till tests give no errors. @@ -79,15 +79,15 @@ So, the development is *iterative*. We write the spec, implement it, make sure t Let's see this development flow in our practical case. -The first step is already complete: we have an initial spec for `pow`. Now, before making the implementation, let's use few JavaScript libraries to run the tests, just to see that they are working (they will all fail). +The first step is already complete: we have an initial spec for `pow`. Now, before making the implementation, let's use a few JavaScript libraries to run the tests, just to see that they are working (they will all fail). ## The spec in action Here in the tutorial we'll be using the following JavaScript libraries for tests: -- [Mocha](http://mochajs.org/) -- the core framework: it provides common testing functions including `describe` and `it` and the main function that runs tests. -- [Chai](http://chaijs.com) -- the library with many assertions. It allows to use a lot of different assertions, for now we need only `assert.equal`. -- [Sinon](http://sinonjs.org/) -- a library to spy over functions, emulate built-in functions and more, we'll need it much later. +- [Mocha](https://mochajs.org/) -- the core framework: it provides common testing functions including `describe` and `it` and the main function that runs tests. +- [Chai](https://www.chaijs.com/) -- the library with many assertions. It allows to use a lot of different assertions, for now we need only `assert.equal`. +- [Sinon](https://sinonjs.org/) -- a library to spy over functions, emulate built-in functions and more, we'll need it much later. These libraries are suitable for both in-browser and server-side testing. Here we'll consider the browser variant. @@ -338,14 +338,14 @@ The newly added tests fail, because our implementation does not support them. Th ```smart header="Other assertions" Please note the assertion `assert.isNaN`: it checks for `NaN`. -There are other assertions in [Chai](http://chaijs.com) as well, for instance: +There are other assertions in [Chai](https://www.chaijs.com/) as well, for instance: - `assert.equal(value1, value2)` -- checks the equality `value1 == value2`. - `assert.strictEqual(value1, value2)` -- checks the strict equality `value1 === value2`. - `assert.notEqual`, `assert.notStrictEqual` -- inverse checks to the ones above. - `assert.isTrue(value)` -- checks that `value === true` - `assert.isFalse(value)` -- checks that `value === false` -- ...the full list is in the [docs](http://chaijs.com/api/assert/) +- ...the full list is in the [docs](https://www.chaijs.com/api/assert/) ``` So we should add a couple of lines to `pow`: diff --git a/1-js/03-code-quality/06-polyfills/article.md b/1-js/03-code-quality/06-polyfills/article.md index f56fbd88f..5ca123908 100644 --- a/1-js/03-code-quality/06-polyfills/article.md +++ b/1-js/03-code-quality/06-polyfills/article.md @@ -1,13 +1,13 @@ # Polyfills and transpilers -The JavaScript language steadily evolves. New proposals to the language appear regularly, they are analyzed and, if considered worthy, are appended to the list at and then progress to the [specification](http://www.ecma-international.org/publications/standards/Ecma-262.htm). +The JavaScript language steadily evolves. New proposals to the language appear regularly, they are analyzed and, if considered worthy, are appended to the list at and then progress to the [specification](https://www.ecma-international.org/publications-and-standards/standards/ecma-262/). Teams behind JavaScript engines have their own ideas about what to implement first. They may decide to implement proposals that are in draft and postpone things that are already in the spec, because they are less interesting or just harder to do. -So it's quite common for an engine to implement only the part of the standard. +So it's quite common for an engine to implement only part of the standard. -A good page to see the current state of support for language features is (it's big, we have a lot to study yet). +A good page to see the current state of support for language features is (it's big, we have a lot to study yet). As programmers, we'd like to use most recent features. The more good stuff - the better! @@ -40,9 +40,9 @@ Now the rewritten code is suitable for older JavaScript engines. Usually, a developer runs the transpiler on their own computer, and then deploys the transpiled code to the server. -Speaking of names, [Babel](https://babeljs.io) is one of the most prominent transpilers out there. +Speaking of names, [Babel](https://babeljs.io) is one of the most prominent transpilers out there. -Modern project build systems, such as [webpack](https://webpack.js.org/), provide means to run transpiler automatically on every code change, so it's very easy to integrate into development process. +Modern project build systems, such as [webpack](https://webpack.js.org/), provide a means to run a transpiler automatically on every code change, so it's very easy to integrate into the development process. ## Polyfills @@ -69,23 +69,20 @@ if (!Math.trunc) { // if no such function } ``` -JavaScript is a highly dynamic language, scripts may add/modify any functions, even including built-in ones. - -Two interesting libraries of polyfills are: -- [core js](https://github.com/zloirock/core-js) that supports a lot, allows to include only needed features. -- [polyfill.io](http://polyfill.io) service that provides a script with polyfills, depending on the features and user's browser. +JavaScript is a highly dynamic language. Scripts may add/modify any function, even built-in ones. +One interesting polyfill library is [core-js](https://github.com/zloirock/core-js), which supports a wide range of features and allows you to include only the ones you need. ## Summary In this chapter we'd like to motivate you to study modern and even "bleeding-edge" language features, even if they aren't yet well-supported by JavaScript engines. -Just don't forget to use transpiler (if using modern syntax or operators) and polyfills (to add functions that may be missing). And they'll ensure that the code works. +Just don't forget to use a transpiler (if using modern syntax or operators) and polyfills (to add functions that may be missing). They'll ensure that the code works. -For example, later when you're familiar with JavaScript, you can setup a code build system based on [webpack](https://webpack.js.org/) with [babel-loader](https://github.com/babel/babel-loader) plugin. +For example, later when you're familiar with JavaScript, you can setup a code build system based on [webpack](https://webpack.js.org/) with the [babel-loader](https://github.com/babel/babel-loader) plugin. Good resources that show the current state of support for various features: -- - for pure JavaScript. +- - for pure JavaScript. - - for browser-related functions. P.S. Google Chrome is usually the most up-to-date with language features, try it if a tutorial demo fails. Most tutorial demos work with any modern browser though. diff --git a/1-js/04-object-basics/01-object/article.md b/1-js/04-object-basics/01-object/article.md index 81c9e1382..0fe5979fa 100644 --- a/1-js/04-object-basics/01-object/article.md +++ b/1-js/04-object-basics/01-object/article.md @@ -355,7 +355,7 @@ In the code above, the property `obj.test` technically exists. So the `in` opera Situations like this happen very rarely, because `undefined` should not be explicitly assigned. We mostly use `null` for "unknown" or "empty" values. So the `in` operator is an exotic guest in the code. -## The "for..in" loop +## The "for..in" loop [#forin] To walk over all keys of an object, there exists a special form of the loop: `for..in`. This is a completely different thing from the `for(;;)` construct that we studied before. diff --git a/1-js/04-object-basics/02-object-copy/article.md b/1-js/04-object-basics/02-object-copy/article.md index b56a8034b..e80f748ab 100644 --- a/1-js/04-object-basics/02-object-copy/article.md +++ b/1-js/04-object-basics/02-object-copy/article.md @@ -37,7 +37,7 @@ And here's how it's actually stored in memory: The object is stored somewhere in memory (at the right of the picture), while the `user` variable (at the left) has a "reference" to it. -We may think of an object variable, such as `user`, as like a sheet of paper with the address of the object on it. +We may think of an object variable, such as `user`, like a sheet of paper with the address of the object on it. When we perform actions with the object, e.g. take a property `user.name`, the JavaScript engine looks at what's at that address and performs the operation on the actual object. @@ -100,15 +100,37 @@ alert( a == b ); // false For comparisons like `obj1 > obj2` or for a comparison against a primitive `obj == 5`, objects are converted to primitives. We'll study how object conversions work very soon, but to tell the truth, such comparisons are needed very rarely -- usually they appear as a result of a programming mistake. +````smart header="Const objects can be modified" +An important side effect of storing objects as references is that an object declared as `const` *can* be modified. + +For instance: + +```js run +const user = { + name: "John" +}; + +*!* +user.name = "Pete"; // (*) +*/!* + +alert(user.name); // Pete +``` + +It might seem that the line `(*)` would cause an error, but it does not. The value of `user` is constant, it must always reference the same object, but properties of that object are free to change. + +In other words, the `const user` gives an error only if we try to set `user=...` as a whole. + +That said, if we really need to make constant object properties, it's also possible, but using totally different methods. We'll mention that in the chapter . +```` + ## Cloning and merging, Object.assign [#cloning-and-merging-object-assign] So, copying an object variable creates one more reference to the same object. -But what if we need to duplicate an object? Create an independent copy, a clone? - -That's also doable, but a little bit more difficult, because there's no built-in method for that in JavaScript. But there is rarely a need -- copying by reference is good most of the time. +But what if we need to duplicate an object? -But if we really want that, then we need to create a new object and replicate the structure of the existing one by iterating over its properties and copying them on the primitive level. +We can create a new object and replicate the structure of the existing one, by iterating over its properties and copying them on the primitive level. Like this: @@ -133,21 +155,22 @@ clone.name = "Pete"; // changed the data in it alert( user.name ); // still John in the original object ``` -Also we can use the method [Object.assign](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign) for that. +We can also use the method [Object.assign](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign). The syntax is: ```js -Object.assign(dest, [src1, src2, src3...]) +Object.assign(dest, ...sources) ``` - The first argument `dest` is a target object. -- Further arguments `src1, ..., srcN` (can be as many as needed) are source objects. -- It copies the properties of all source objects `src1, ..., srcN` into the target `dest`. In other words, properties of all arguments starting from the second are copied into the first object. -- The call returns `dest`. +- Further arguments is a list of source objects. -For instance, we can use it to merge several objects into one: -```js +It copies the properties of all source objects into the target `dest`, and then returns it as the result. + +For example, we have `user` object, let's add a couple of permissions to it: + +```js run let user = { name: "John" }; let permissions1 = { canView: true }; @@ -159,6 +182,9 @@ Object.assign(user, permissions1, permissions2); */!* // now user = { name: "John", canView: true, canEdit: true } +alert(user.name); // John +alert(user.canView); // true +alert(user.canEdit); // true ``` If the copied property name already exists, it gets overwritten: @@ -171,9 +197,9 @@ Object.assign(user, { name: "Pete" }); alert(user.name); // now user = { name: "Pete" } ``` -We also can use `Object.assign` to replace `for..in` loop for simple cloning: +We also can use `Object.assign` to perform a simple object cloning: -```js +```js run let user = { name: "John", age: 30 @@ -182,15 +208,18 @@ let user = { *!* let clone = Object.assign({}, user); */!* + +alert(clone.name); // John +alert(clone.age); // 30 ``` -It copies all properties of `user` into the empty object and returns it. +Here it copies all properties of `user` into the empty object and returns it. There are also other methods of cloning an object, e.g. using the [spread syntax](info:rest-parameters-spread) `clone = {...user}`, covered later in the tutorial. ## Nested cloning -Until now we assumed that all properties of `user` are primitive. But properties can be references to other objects. What to do with them? +Until now we assumed that all properties of `user` are primitive. But properties can be references to other objects. Like this: ```js run @@ -205,9 +234,7 @@ let user = { alert( user.sizes.height ); // 182 ``` -Now it's not enough to copy `clone.sizes = user.sizes`, because the `user.sizes` is an object, it will be copied by reference. So `clone` and `user` will share the same sizes: - -Like this: +Now it's not enough to copy `clone.sizes = user.sizes`, because `user.sizes` is an object, and will be copied by reference, so `clone` and `user` will share the same sizes: ```js run let user = { @@ -223,37 +250,71 @@ let clone = Object.assign({}, user); alert( user.sizes === clone.sizes ); // true, same object // user and clone share sizes -user.sizes.width++; // change a property from one place -alert(clone.sizes.width); // 51, see the result from the other one +user.sizes.width = 60; // change a property from one place +alert(clone.sizes.width); // 60, get the result from the other one ``` -To fix that, we should use a cloning loop that examines each value of `user[key]` and, if it's an object, then replicate its structure as well. That is called a "deep cloning". +To fix that and make `user` and `clone` truly separate objects, we should use a cloning loop that examines each value of `user[key]` and, if it's an object, then replicate its structure as well. That is called a "deep cloning" or "structured cloning". There's [structuredClone](https://developer.mozilla.org/en-US/docs/Web/API/structuredClone) method that implements deep cloning. -We can use recursion to implement it. Or, to not reinvent the wheel, take an existing implementation, for instance [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep) from the JavaScript library [lodash](https://lodash.com). -````smart header="Const objects can be modified" -An important side effect of storing objects as references is that an object declared as `const` *can* be modified. +### structuredClone -For instance: +The call `structuredClone(object)` clones the `object` with all nested properties. + +Here's how we can use it in our example: ```js run -const user = { - name: "John" +let user = { + name: "John", + sizes: { + height: 182, + width: 50 + } }; *!* -user.name = "Pete"; // (*) +let clone = structuredClone(user); */!* -alert(user.name); // Pete +alert( user.sizes === clone.sizes ); // false, different objects + +// user and clone are totally unrelated now +user.sizes.width = 60; // change a property from one place +alert(clone.sizes.width); // 50, not related ``` -It might seem that the line `(*)` would cause an error, but it does not. The value of `user` is constant, it must always reference the same object, but properties of that object are free to change. +The `structuredClone` method can clone most data types, such as objects, arrays, primitive values. -In other words, the `const user` gives an error only if we try to set `user=...` as a whole. +It also supports circular references, when an object property references the object itself (directly or via a chain or references). -That said, if we really need to make constant object properties, it's also possible, but using totally different methods. We'll mention that in the chapter . -```` +For instance: + +```js run +let user = {}; +// let's create a circular reference: +// user.me references the user itself +user.me = user; + +let clone = structuredClone(user); +alert(clone.me === clone); // true +``` + +As you can see, `clone.me` references the `clone`, not the `user`! So the circular reference was cloned correctly as well. + +Although, there are cases when `structuredClone` fails. + +For instance, when an object has a function property: + +```js run +// error +structuredClone({ + f: function() {} +}); +``` + +Function properties aren't supported. + +To handle such complex cases we may need to use a combination of cloning methods, write custom code or, to not reinvent the wheel, take an existing implementation, for instance [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep) from the JavaScript library [lodash](https://lodash.com). ## Summary @@ -261,4 +322,4 @@ Objects are assigned and copied by reference. In other words, a variable stores All operations via copied references (like adding/removing properties) are performed on the same single object. -To make a "real copy" (a clone) we can use `Object.assign` for the so-called "shallow copy" (nested objects are copied by reference) or a "deep cloning" function, such as [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep). +To make a "real copy" (a clone) we can use `Object.assign` for the so-called "shallow copy" (nested objects are copied by reference) or a "deep cloning" function `structuredClone` or use a custom cloning implementation, such as [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep). diff --git a/1-js/04-object-basics/03-garbage-collection/article.md b/1-js/04-object-basics/03-garbage-collection/article.md index 72e30469c..1b576d629 100644 --- a/1-js/04-object-basics/03-garbage-collection/article.md +++ b/1-js/04-object-basics/03-garbage-collection/article.md @@ -74,7 +74,7 @@ Now if we do the same: user = null; ``` -...Then the object is still reachable via `admin` global variable, so it's in memory. If we overwrite `admin` too, then it can be removed. +...Then the object is still reachable via `admin` global variable, so it must stay in memory. If we overwrite `admin` too, then it can be removed. ## Interlinked objects @@ -169,11 +169,11 @@ The first step marks the roots: ![](garbage-collection-2.svg) -Then their references are marked: +Then we follow their references and mark referenced objects: ![](garbage-collection-3.svg) -...And their references, while possible: +...And continue to follow further references, while possible: ![](garbage-collection-4.svg) @@ -183,12 +183,12 @@ Now the objects that could not be visited in the process are considered unreacha We can also imagine the process as spilling a huge bucket of paint from the roots, that flows through all references and marks all reachable objects. The unmarked ones are then removed. -That's the concept of how garbage collection works. JavaScript engines apply many optimizations to make it run faster and not affect the execution. +That's the concept of how garbage collection works. JavaScript engines apply many optimizations to make it run faster and not introduce any delays into the code execution. Some of the optimizations: -- **Generational collection** -- objects are split into two sets: "new ones" and "old ones". Many objects appear, do their job and die fast, they can be cleaned up aggressively. Those that survive for long enough, become "old" and are examined less often. -- **Incremental collection** -- if there are many objects, and we try to walk and mark the whole object set at once, it may take some time and introduce visible delays in the execution. So the engine tries to split the garbage collection into pieces. Then the pieces are executed one by one, separately. That requires some extra bookkeeping between them to track changes, but we have many tiny delays instead of a big one. +- **Generational collection** -- objects are split into two sets: "new ones" and "old ones". In typical code, many objects have a short life span: they appear, do their job and die fast, so it makes sense to track new objects and clear the memory from them if that's the case. Those that survive for long enough, become "old" and are examined less often. +- **Incremental collection** -- if there are many objects, and we try to walk and mark the whole object set at once, it may take some time and introduce visible delays in the execution. So the engine splits the whole set of existing objects into multiple parts. And then clear these parts one after another. There are many small garbage collections instead of a total one. That requires some extra bookkeeping between them to track changes, but we get many tiny delays instead of a big one. - **Idle-time collection** -- the garbage collector tries to run only while the CPU is idle, to reduce the possible effect on the execution. There exist other optimizations and flavours of garbage collection algorithms. As much as I'd like to describe them here, I have to hold off, because different engines implement different tweaks and techniques. And, what's even more important, things change as engines develop, so studying deeper "in advance", without a real need is probably not worth that. Unless, of course, it is a matter of pure interest, then there will be some links for you below. @@ -199,14 +199,14 @@ The main things to know: - Garbage collection is performed automatically. We cannot force or prevent it. - Objects are retained in memory while they are reachable. -- Being referenced is not the same as being reachable (from a root): a pack of interlinked objects can become unreachable as a whole. +- Being referenced is not the same as being reachable (from a root): a pack of interlinked objects can become unreachable as a whole, as we've seen in the example above. Modern engines implement advanced algorithms of garbage collection. A general book "The Garbage Collection Handbook: The Art of Automatic Memory Management" (R. Jones et al) covers some of them. -If you are familiar with low-level programming, the more detailed information about V8 garbage collector is in the article [A tour of V8: Garbage Collection](http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection). +If you are familiar with low-level programming, more detailed information about V8's garbage collector is in the article [A tour of V8: Garbage Collection](https://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection). -[V8 blog](https://v8.dev/) also publishes articles about changes in memory management from time to time. Naturally, to learn the garbage collection, you'd better prepare by learning about V8 internals in general and read the blog of [Vyacheslav Egorov](http://mrale.ph) who worked as one of V8 engineers. I'm saying: "V8", because it is best covered with articles in the internet. For other engines, many approaches are similar, but garbage collection differs in many aspects. +The [V8 blog](https://v8.dev/) also publishes articles about changes in memory management from time to time. Naturally, to learn more about garbage collection, you'd better prepare by learning about V8 internals in general and read the blog of [Vyacheslav Egorov](https://mrale.ph) who worked as one of the V8 engineers. I'm saying: "V8", because it is best covered by articles on the internet. For other engines, many approaches are similar, but garbage collection differs in many aspects. -In-depth knowledge of engines is good when you need low-level optimizations. It would be wise to plan that as the next step after you're familiar with the language. +In-depth knowledge of engines is good when you need low-level optimizations. It would be wise to plan that as the next step after you're familiar with the language. diff --git a/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md b/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md index a2a19c620..7d2ef8c15 100644 --- a/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md +++ b/1-js/04-object-basics/04-object-methods/8-chain-calls/task.md @@ -4,7 +4,7 @@ importance: 2 # Chaining -There's a `ladder` object that allows to go up and down: +There's a `ladder` object that allows you to go up and down: ```js let ladder = { @@ -21,7 +21,7 @@ let ladder = { }; ``` -Now, if we need to make several calls in sequence, can do it like this: +Now, if we need to make several calls in sequence, we can do it like this: ```js ladder.up(); @@ -32,10 +32,10 @@ ladder.down(); ladder.showStep(); // 0 ``` -Modify the code of `up`, `down` and `showStep` to make the calls chainable, like this: +Modify the code of `up`, `down`, and `showStep` to make the calls chainable, like this: ```js ladder.up().up().down().showStep().down().showStep(); // shows 1 then 0 ``` -Such approach is widely used across JavaScript libraries. +Such an approach is widely used across JavaScript libraries. diff --git a/1-js/04-object-basics/04-object-methods/article.md b/1-js/04-object-basics/04-object-methods/article.md index 88e8883fd..cea2b6a70 100644 --- a/1-js/04-object-basics/04-object-methods/article.md +++ b/1-js/04-object-basics/04-object-methods/article.md @@ -90,7 +90,7 @@ user = { As demonstrated, we can omit `"function"` and just write `sayHi()`. -To tell the truth, the notations are not fully identical. There are subtle differences related to object inheritance (to be covered later), but for now they do not matter. In almost all cases the shorter syntax is preferred. +To tell the truth, the notations are not fully identical. There are subtle differences related to object inheritance (to be covered later), but for now they do not matter. In almost all cases, the shorter syntax is preferred. ## "this" in methods diff --git a/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md b/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md index d80113acc..e932a201a 100644 --- a/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md +++ b/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md @@ -10,8 +10,8 @@ Is it possible to create functions `A` and `B` so that `new A() == new B()`? function A() { ... } function B() { ... } -let a = new A; -let b = new B; +let a = new A(); +let b = new B(); alert( a == b ); // true ``` diff --git a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md index 60e7c373e..c862bec40 100644 --- a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md +++ b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md @@ -6,7 +6,7 @@ importance: 5 Create a constructor function `Calculator` that creates objects with 3 methods: -- `read()` asks for two values using `prompt` and remembers them in object properties. +- `read()` prompts for two values and saves them as object properties with names `a` and `b` respectively. - `sum()` returns the sum of these properties. - `mul()` returns the multiplication product of these properties. diff --git a/1-js/04-object-basics/06-constructor-new/article.md b/1-js/04-object-basics/06-constructor-new/article.md index f3e9c3ec0..a335464f1 100644 --- a/1-js/04-object-basics/06-constructor-new/article.md +++ b/1-js/04-object-basics/06-constructor-new/article.md @@ -171,7 +171,7 @@ alert( new SmallUser().name ); // John Usually constructors don't have a `return` statement. Here we mention the special behavior with returning objects mainly for the sake of completeness. ````smart header="Omitting parentheses" -By the way, we can omit parentheses after `new`, if it has no arguments: +By the way, we can omit parentheses after `new`: ```js let user = new User; // <-- no parentheses diff --git a/1-js/04-object-basics/08-symbol/article.md b/1-js/04-object-basics/08-symbol/article.md index f61e88583..10a98af0a 100644 --- a/1-js/04-object-basics/08-symbol/article.md +++ b/1-js/04-object-basics/08-symbol/article.md @@ -8,7 +8,7 @@ By specification, only two primitive types may serve as object property keys: Otherwise, if one uses another type, such as number, it's autoconverted to string. So that `obj[1]` is the same as `obj["1"]`, and `obj[true]` is the same as `obj["true"]`. -Till now we've been using only strings. +Until now we've been using only strings. Now let's explore symbols, see what they can do for us. @@ -22,14 +22,14 @@ A value of this type can be created using `Symbol()`: let id = Symbol(); ``` -Upon creation, we can give symbol a description (also called a symbol name), mostly useful for debugging purposes: +Upon creation, we can give symbols a description (also called a symbol name), mostly useful for debugging purposes: ```js // id is a symbol with the description "id" let id = Symbol("id"); ``` -Symbols are guaranteed to be unique. Even if we create many symbols with the same description, they are different values. The description is just a label that doesn't affect anything. +Symbols are guaranteed to be unique. Even if we create many symbols with exactly the same description, they are different values. The description is just a label that doesn't affect anything. For instance, here are two symbols with the same description -- they are not equal: @@ -44,7 +44,7 @@ alert(id1 == id2); // false If you are familiar with Ruby or another language that also has some sort of "symbols" -- please don't be misguided. JavaScript symbols are different. -So, to summarize, symbols are "primitive unique values" with optional description. Let's see where we can use them. +So, to summarize, a symbol is a "primitive unique value" with an optional description. Let's see where we can use them. ````warn header="Symbols don't auto-convert to a string" Most values in JavaScript support implicit conversion to a string. For instance, we can `alert` almost any value, and it will work. Symbols are special. They don't auto-convert. @@ -103,9 +103,9 @@ alert( user[id] ); // we can access the data using the symbol as the key What's the benefit of using `Symbol("id")` over a string `"id"`? -As `user` objects belongs to another code, and that code also works with them, we shouldn't just add any fields to it. That's unsafe. But a symbol cannot be accessed accidentally, the third-party code probably won't even see it, so it's probably all right to do. +As `user` objects belong to another codebase, it's unsafe to add fields to them, since we might affect pre-defined behavior in that other codebase. However, symbols cannot be accessed accidentally. The third-party code won't be aware of newly defined symbols, so it's safe to add symbols to the `user` objects. -Also, imagine that another script wants to have its own identifier inside `user`, for its own purposes. That may be another JavaScript library, so that the scripts are completely unaware of each other. +Also, imagine that another script wants to have its own identifier inside `user`, for its own purposes. Then that script can create its own `Symbol("id")`, like this: @@ -169,7 +169,7 @@ for (let key in user) alert(key); // name, age (no symbols) */!* // the direct access by the symbol works -alert( "Direct: " + user[id] ); +alert( "Direct: " + user[id] ); // Direct: 123 ``` [Object.keys(user)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys) also ignores them. That's a part of the general "hiding symbolic properties" principle. If another script or a library loops over our object, it won't unexpectedly access a symbolic property. @@ -217,12 +217,12 @@ Symbols inside the registry are called *global symbols*. If we want an applicati ```smart header="That sounds like Ruby" In some programming languages, like Ruby, there's a single symbol per name. -In JavaScript, as we can see, that's right for global symbols. +In JavaScript, as we can see, that's true for global symbols. ``` ### Symbol.keyFor -For global symbols, not only `Symbol.for(key)` returns a symbol by name, but there's a reverse call: `Symbol.keyFor(sym)`, that does the reverse: returns a name by a global symbol. +We have seen that for global symbols, `Symbol.for(key)` returns a symbol by name. To do the opposite -- return a name by global symbol -- we can use: `Symbol.keyFor(sym)`: For instance: @@ -238,7 +238,7 @@ alert( Symbol.keyFor(sym2) ); // id The `Symbol.keyFor` internally uses the global symbol registry to look up the key for the symbol. So it doesn't work for non-global symbols. If the symbol is not global, it won't be able to find it and returns `undefined`. -That said, any symbols have `description` property. +That said, all symbols have the `description` property. For instance: @@ -286,4 +286,4 @@ Symbols have two main use cases: 2. There are many system symbols used by JavaScript which are accessible as `Symbol.*`. We can use them to alter some built-in behaviors. For instance, later in the tutorial we'll use `Symbol.iterator` for [iterables](info:iterable), `Symbol.toPrimitive` to setup [object-to-primitive conversion](info:object-toprimitive) and so on. -Technically, symbols are not 100% hidden. There is a built-in method [Object.getOwnPropertySymbols(obj)](mdn:js/Object/getOwnPropertySymbols) that allows us to get all symbols. Also there is a method named [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) that returns *all* keys of an object including symbolic ones. So they are not really hidden. But most libraries, built-in functions and syntax constructs don't use these methods. +Technically, symbols are not 100% hidden. There is a built-in method [Object.getOwnPropertySymbols(obj)](mdn:js/Object/getOwnPropertySymbols) that allows us to get all symbols. Also there is a method named [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) that returns *all* keys of an object including symbolic ones. But most libraries, built-in functions and syntax constructs don't use these methods. diff --git a/1-js/04-object-basics/09-object-toprimitive/article.md b/1-js/04-object-basics/09-object-toprimitive/article.md index 872c1f5b2..fa68da583 100644 --- a/1-js/04-object-basics/09-object-toprimitive/article.md +++ b/1-js/04-object-basics/09-object-toprimitive/article.md @@ -3,7 +3,7 @@ What happens when objects are added `obj1 + obj2`, subtracted `obj1 - obj2` or printed using `alert(obj)`? -JavaScript doesn't exactly allow to customize how operators work on objects. Unlike some other programming languages, such as Ruby or C++, we can't implement a special object method to handle an addition (or other operators). +JavaScript doesn't allow you to customize how operators work on objects. Unlike some other programming languages, such as Ruby or C++, we can't implement a special object method to handle addition (or other operators). In case of such operations, objects are auto-converted to primitives, and then the operation is carried out over these primitives and results in a primitive value. @@ -136,8 +136,8 @@ As we can see from the code, `user` becomes a self-descriptive string or a money If there's no `Symbol.toPrimitive` then JavaScript tries to find methods `toString` and `valueOf`: -- For the `"string"` hint: call `toString` method, and if it doesn't exist, then `valueOf` (so `toString` has the priority for string conversions). -- For other hints: `valueOf`, and if it doesn't exist, then `toString` (so `valueOf` has the priority for maths). +- For the `"string"` hint: call `toString` method, and if it doesn't exist or if it returns an object instead of a primitive value, then call `valueOf` (so `toString` has the priority for string conversions). +- For other hints: call `valueOf`, and if it doesn't exist or if it returns an object instead of a primitive value, then call `toString` (so `valueOf` has the priority for maths). Methods `toString` and `valueOf` come from ancient times. They are not symbols (symbols did not exist that long ago), but rather "regular" string-named methods. They provide an alternative "old-style" way to implement the conversion. @@ -226,7 +226,7 @@ As we know already, many operators and functions perform type conversions, e.g. If we pass an object as an argument, then there are two stages of calculations: 1. The object is converted to a primitive (using the rules described above). -2. If the necessary for further calculations, the resulting primitive is also converted. +2. If necessary for further calculations, the resulting primitive is also converted. For instance: @@ -253,7 +253,7 @@ let obj = { } }; -alert(obj + 2); // 22 ("2" + 2), conversion to primitive returned a string => concatenation +alert(obj + 2); // "22" ("2" + 2), conversion to primitive returned a string => concatenation ``` ## Summary diff --git a/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md b/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md index 50c781ea5..208f84cc7 100644 --- a/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md +++ b/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md @@ -15,4 +15,4 @@ str.test = 5; alert(str.test); ``` -How do you think, will it work? What will be shown? +What do you think, will it work? What will be shown? diff --git a/1-js/05-data-types/01-primitives-methods/article.md b/1-js/05-data-types/01-primitives-methods/article.md index ced8c3f13..69e7196e9 100644 --- a/1-js/05-data-types/01-primitives-methods/article.md +++ b/1-js/05-data-types/01-primitives-methods/article.md @@ -104,9 +104,10 @@ if (zero) { // zero is true, because it's an object } ``` -On the other hand, using the same functions `String/Number/Boolean` without `new` is a totally sane and useful thing. They convert a value to the corresponding type: to a string, a number, or a boolean (primitive). +On the other hand, using the same functions `String/Number/Boolean` without `new` is totally fine and useful thing. They convert a value to the corresponding type: to a string, a number, or a boolean (primitive). For example, this is entirely valid: + ```js let num = Number("123"); // convert a string to number ``` diff --git a/1-js/05-data-types/02-number/2-why-rounded-down/solution.md b/1-js/05-data-types/02-number/2-why-rounded-down/solution.md index a17a4671a..4bcd74512 100644 --- a/1-js/05-data-types/02-number/2-why-rounded-down/solution.md +++ b/1-js/05-data-types/02-number/2-why-rounded-down/solution.md @@ -28,6 +28,6 @@ Note that `63.5` has no precision loss at all. That's because the decimal part ` ```js run -alert( Math.round(6.35 * 10) / 10); // 6.35 -> 63.5 -> 64(rounded) -> 6.4 +alert( Math.round(6.35 * 10) / 10 ); // 6.35 -> 63.5 -> 64(rounded) -> 6.4 ``` diff --git a/1-js/05-data-types/02-number/article.md b/1-js/05-data-types/02-number/article.md index afb679890..8e41f673d 100644 --- a/1-js/05-data-types/02-number/article.md +++ b/1-js/05-data-types/02-number/article.md @@ -2,9 +2,9 @@ In modern JavaScript, there are two types of numbers: -1. Regular numbers in JavaScript are stored in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754-2008_revision), also known as "double precision floating point numbers". These are numbers that we're using most of the time, and we'll talk about them in this chapter. +1. Regular numbers in JavaScript are stored in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754), also known as "double precision floating point numbers". These are numbers that we're using most of the time, and we'll talk about them in this chapter. -2. BigInt numbers, to represent integers of arbitrary length. They are sometimes needed, because a regular number can't safely exceed 253 or be less than -253. As bigints are used in few special areas, we devote them a special chapter . +2. BigInt numbers represent integers of arbitrary length. They are sometimes needed because a regular integer number can't safely exceed (253-1) or be less than -(253-1), as we mentioned earlier in the chapter . As bigints are used in a few special areas, we devote them to a special chapter . So here we'll talk about regular numbers. Let's expand our knowledge of them. @@ -41,7 +41,7 @@ In other words, `e` multiplies the number by `1` with the given zeroes count. 1.23e6 === 1.23 * 1000000; // e6 means *1000000 ``` -Now let's write something very small. Say, 1 microsecond (one millionth of a second): +Now let's write something very small. Say, 1 microsecond (one-millionth of a second): ```js let mсs = 0.000001; @@ -50,7 +50,7 @@ let mсs = 0.000001; Just like before, using `"e"` can help. If we'd like to avoid writing the zeroes explicitly, we could write the same as: ```js -let mcs = 1e-6; // six zeroes to the left from 1 +let mcs = 1e-6; // five zeroes to the left from 1 ``` If we count the zeroes in `0.000001`, there are 6 of them. So naturally it's `1e-6`. @@ -63,6 +63,9 @@ In other words, a negative number after `"e"` means a division by 1 with the giv // -6 divides by 1 with 6 zeroes 1.23e-6 === 1.23 / 1000000; // 0.00000123 + +// an example with a bigger number +1234e-2 === 1234 / 100; // 12.34, decimal point moves 2 times ``` ### Hex, binary and octal numbers @@ -100,13 +103,13 @@ alert( num.toString(16) ); // ff alert( num.toString(2) ); // 11111111 ``` -The `base` can vary from `2` to `36`. By default it's `10`. +The `base` can vary from `2` to `36`. By default, it's `10`. Common use cases for this are: - **base=16** is used for hex colors, character encodings etc, digits can be `0..9` or `A..F`. - **base=2** is mostly for debugging bitwise operations, digits can be `0` or `1`. -- **base=36** is the maximum, digits can be `0..9` or `A..Z`. The whole latin alphabet is used to represent a number. A funny, but useful case for `36` is when we need to turn a long numeric identifier into something shorter, for example to make a short url. Can simply represent it in the numeral system with base `36`: +- **base=36** is the maximum, digits can be `0..9` or `A..Z`. The whole Latin alphabet is used to represent a number. A funny, but useful case for `36` is when we need to turn a long numeric identifier into something shorter, for example, to make a short url. Can simply represent it in the numeral system with base `36`: ```js run alert( 123456..toString(36) ); // 2n9c @@ -115,7 +118,7 @@ Common use cases for this are: ```warn header="Two dots to call a method" Please note that two dots in `123456..toString(36)` is not a typo. If we want to call a method directly on a number, like `toString` in the example above, then we need to place two dots `..` after it. -If we placed a single dot: `123456.toString(36)`, then there would be an error, because JavaScript syntax implies the decimal part after the first dot. And if we place one more dot, then JavaScript knows that the decimal part is empty and now goes the method. +If we placed a single dot: `123456.toString(36)`, then there would be an error, because JavaScript syntax implies the decimal part after the first dot. And if we place one more dot, then JavaScript knows that the decimal part is empty and now uses the method. Also could write `(123456).toString(36)`. @@ -134,7 +137,7 @@ There are several built-in functions for rounding: : Rounds up: `3.1` becomes `4`, and `-1.1` becomes `-1`. `Math.round` -: Rounds to the nearest integer: `3.1` becomes `3`, `3.6` becomes `4`, the middle case: `3.5` rounds up to `4` too. +: Rounds to the nearest integer: `3.1` becomes `3`, `3.6` becomes `4`. In the middle cases `3.5` rounds up to `4`, and `-3.5` rounds up to `-3`. `Math.trunc` (not supported by Internet Explorer) : Removes anything after the decimal point without rounding: `3.1` becomes `3`, `-1.1` becomes `-1`. @@ -144,8 +147,10 @@ Here's the table to summarize the differences between them: | | `Math.floor` | `Math.ceil` | `Math.round` | `Math.trunc` | |---|---------|--------|---------|---------| |`3.1`| `3` | `4` | `3` | `3` | +|`3.5`| `3` | `4` | `4` | `3` | |`3.6`| `3` | `4` | `4` | `3` | |`-1.1`| `-2` | `-1` | `-1` | `-1` | +|`-1.5`| `-2` | `-1` | `-1` | `-1` | |`-1.6`| `-2` | `-1` | `-2` | `-1` | @@ -178,18 +183,18 @@ There are two ways to do so: alert( num.toFixed(1) ); // "12.4" ``` - Please note that result of `toFixed` is a string. If the decimal part is shorter than required, zeroes are appended to the end: + Please note that the result of `toFixed` is a string. If the decimal part is shorter than required, zeroes are appended to the end: ```js run let num = 12.34; alert( num.toFixed(5) ); // "12.34000", added zeroes to make exactly 5 digits ``` - We can convert it to a number using the unary plus or a `Number()` call, e.g write `+num.toFixed(5)`. + We can convert it to a number using the unary plus or a `Number()` call, e.g. write `+num.toFixed(5)`. ## Imprecise calculations -Internally, a number is represented in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754-2008_revision), so there are exactly 64 bits to store a number: 52 of them are used to store the digits, 11 of them store the position of the decimal point (they are zero for integer numbers), and 1 bit is for the sign. +Internally, a number is represented in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754), so there are exactly 64 bits to store a number: 52 of them are used to store the digits, 11 of them store the position of the decimal point, and 1 bit is for the sign. If a number is really huge, it may overflow the 64-bit storage and become a special numeric value `Infinity`: @@ -219,7 +224,13 @@ But why does this happen? A number is stored in memory in its binary form, a sequence of bits - ones and zeroes. But fractions like `0.1`, `0.2` that look simple in the decimal numeric system are actually unending fractions in their binary form. -What is `0.1`? It is one divided by ten `1/10`, one-tenth. In decimal numeral system such numbers are easily representable. Compare it to one-third: `1/3`. It becomes an endless fraction `0.33333(3)`. +```js run +alert(0.1.toString(2)); // 0.0001100110011001100110011001100110011001100110011001101 +alert(0.2.toString(2)); // 0.001100110011001100110011001100110011001100110011001101 +alert((0.1 + 0.2).toString(2)); // 0.0100110011001100110011001100110011001100110011001101 +``` + +What is `0.1`? It is one divided by ten `1/10`, one-tenth. In the decimal numeral system, such numbers are easily representable. Compare it to one-third: `1/3`. It becomes an endless fraction `0.33333(3)`. So, division by powers `10` is guaranteed to work well in the decimal system, but division by `3` is not. For the same reason, in the binary numeral system, the division by powers of `2` is guaranteed to work, but `1/10` becomes an endless binary fraction. @@ -239,14 +250,14 @@ That's why `0.1 + 0.2` is not exactly `0.3`. ```smart header="Not only JavaScript" The same issue exists in many other programming languages. -PHP, Java, C, Perl, Ruby give exactly the same result, because they are based on the same numeric format. +PHP, Java, C, Perl, and Ruby give exactly the same result, because they are based on the same numeric format. ``` Can we work around the problem? Sure, the most reliable method is to round the result with the help of a method [toFixed(n)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toFixed): ```js run let sum = 0.1 + 0.2; -alert( sum.toFixed(2) ); // 0.30 +alert( sum.toFixed(2) ); // "0.30" ``` Please note that `toFixed` always returns a string. It ensures that it has 2 digits after the decimal point. That's actually convenient if we have an e-shopping and need to show `$0.30`. For other cases, we can use the unary plus to coerce it into a number: @@ -263,7 +274,7 @@ alert( (0.1 * 10 + 0.2 * 10) / 10 ); // 0.3 alert( (0.28 * 100 + 0.14 * 100) / 100); // 0.4200000000000001 ``` -So, multiply/divide approach reduces the error, but doesn't remove it totally. +So, the multiply/divide approach reduces the error, but doesn't remove it totally. Sometimes we could try to evade fractions at all. Like if we're dealing with a shop, then we can store prices in cents instead of dollars. But what if we apply a discount of 30%? In practice, totally evading fractions is rarely possible. Just round them to cut "tails" when needed. @@ -285,7 +296,7 @@ Another funny consequence of the internal representation of numbers is the exist That's because a sign is represented by a single bit, so it can be set or not set for any number including a zero. -In most cases the distinction is unnoticeable, because operators are suited to treat them as the same. +In most cases, the distinction is unnoticeable, because operators are suited to treat them as the same. ``` ## Tests: isFinite and isNaN @@ -305,7 +316,7 @@ They belong to the type `number`, but are not "normal" numbers, so there are spe alert( isNaN("str") ); // true ``` - But do we need this function? Can't we just use the comparison `=== NaN`? Sorry, but the answer is no. The value `NaN` is unique in that it does not equal anything, including itself: + But do we need this function? Can't we just use the comparison `=== NaN`? Unfortunately not. The value `NaN` is unique in that it does not equal anything, including itself: ```js run alert( NaN === NaN ); // false @@ -331,15 +342,44 @@ alert( isFinite(num) ); Please note that an empty or a space-only string is treated as `0` in all numeric functions including `isFinite`. -```smart header="Compare with `Object.is`" +````smart header="`Number.isNaN` and `Number.isFinite`" +[Number.isNaN](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isNaN) and [Number.isFinite](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isFinite) methods are the more "strict" versions of `isNaN` and `isFinite` functions. They do not autoconvert their argument into a number, but check if it belongs to the `number` type instead. + +- `Number.isNaN(value)` returns `true` if the argument belongs to the `number` type and it is `NaN`. In any other case, it returns `false`. + + ```js run + alert( Number.isNaN(NaN) ); // true + alert( Number.isNaN("str" / 2) ); // true + + // Note the difference: + alert( Number.isNaN("str") ); // false, because "str" belongs to the string type, not the number type + alert( isNaN("str") ); // true, because isNaN converts string "str" into a number and gets NaN as a result of this conversion + ``` + +- `Number.isFinite(value)` returns `true` if the argument belongs to the `number` type and it is not `NaN/Infinity/-Infinity`. In any other case, it returns `false`. + + ```js run + alert( Number.isFinite(123) ); // true + alert( Number.isFinite(Infinity) ); // false + alert( Number.isFinite(2 / 0) ); // false + + // Note the difference: + alert( Number.isFinite("123") ); // false, because "123" belongs to the string type, not the number type + alert( isFinite("123") ); // true, because isFinite converts string "123" into a number 123 + ``` + +In a way, `Number.isNaN` and `Number.isFinite` are simpler and more straightforward than `isNaN` and `isFinite` functions. In practice though, `isNaN` and `isFinite` are mostly used, as they're shorter to write. +```` + +```smart header="Comparison with `Object.is`" There is a special built-in method `Object.is` that compares values like `===`, but is more reliable for two edge cases: 1. It works with `NaN`: `Object.is(NaN, NaN) === true`, that's a good thing. -2. Values `0` and `-0` are different: `Object.is(0, -0) === false`, technically that's true, because internally the number has a sign bit that may be different even if all other bits are zeroes. +2. Values `0` and `-0` are different: `Object.is(0, -0) === false`, technically that's correct because internally the number has a sign bit that may be different even if all other bits are zeroes. In all other cases, `Object.is(a, b)` is the same as `a === b`. -This way of comparison is often used in JavaScript specification. When an internal algorithm needs to compare two values for being exactly the same, it uses `Object.is` (internally called [SameValue](https://tc39.github.io/ecma262/#sec-samevalue)). +We mention `Object.is` here, because it's often used in JavaScript specification. When an internal algorithm needs to compare two values for being exactly the same, it uses `Object.is` (internally called [SameValue](https://tc39.github.io/ecma262/#sec-samevalue)). ``` @@ -353,7 +393,7 @@ alert( +"100px" ); // NaN The sole exception is spaces at the beginning or at the end of the string, as they are ignored. -But in real life we often have values in units, like `"100px"` or `"12pt"` in CSS. Also in many countries the currency symbol goes after the amount, so we have `"19€"` and would like to extract a numeric value out of that. +But in real life, we often have values in units, like `"100px"` or `"12pt"` in CSS. Also in many countries, the currency symbol goes after the amount, so we have `"19€"` and would like to extract a numeric value out of that. That's what `parseInt` and `parseFloat` are for. @@ -399,8 +439,8 @@ A few examples: alert( Math.random() ); // ... (any random numbers) ``` -`Math.max(a, b, c...)` / `Math.min(a, b, c...)` -: Returns the greatest/smallest from the arbitrary number of arguments. +`Math.max(a, b, c...)` and `Math.min(a, b, c...)` +: Returns the greatest and smallest from the arbitrary number of arguments. ```js run alert( Math.max(3, 5, -10, 0, 1) ); // 5 @@ -429,6 +469,13 @@ For different numeral systems: - `parseInt(str, base)` parses the string `str` into an integer in numeral system with given `base`, `2 ≤ base ≤ 36`. - `num.toString(base)` converts a number to a string in the numeral system with the given `base`. +For regular number tests: + +- `isNaN(value)` converts its argument to a number and then tests it for being `NaN` +- `Number.isNaN(value)` checks whether its argument belongs to the `number` type, and if so, tests it for being `NaN` +- `isFinite(value)` converts its argument to a number and then tests it for not being `NaN/Infinity/-Infinity` +- `Number.isFinite(value)` checks whether its argument belongs to the `number` type, and if so, tests it for not being `NaN/Infinity/-Infinity` + For converting values like `12pt` and `100px` to a number: - Use `parseInt/parseFloat` for the "soft" conversion, which reads a number from a string and then returns the value they could read before the error. @@ -440,4 +487,4 @@ For fractions: More mathematical functions: -- See the [Math](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Math) object when you need them. The library is very small, but can cover basic needs. +- See the [Math](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Math) object when you need them. The library is very small but can cover basic needs. diff --git a/1-js/05-data-types/03-string/1-ucfirst/solution.md b/1-js/05-data-types/03-string/1-ucfirst/solution.md index f7a332d0d..be5dd2aaf 100644 --- a/1-js/05-data-types/03-string/1-ucfirst/solution.md +++ b/1-js/05-data-types/03-string/1-ucfirst/solution.md @@ -8,12 +8,7 @@ let newStr = str[0].toUpperCase() + str.slice(1); There's a small problem though. If `str` is empty, then `str[0]` is `undefined`, and as `undefined` doesn't have the `toUpperCase()` method, we'll get an error. -There are two variants here: - -1. Use `str.charAt(0)`, as it always returns a string (maybe empty). -2. Add a test for an empty string. - -Here's the 2nd variant: +The easiest way out is to add a test for an empty string, like this: ```js run demo function ucFirst(str) { @@ -24,4 +19,3 @@ function ucFirst(str) { alert( ucFirst("john") ); // John ``` - diff --git a/1-js/05-data-types/03-string/3-truncate/task.md b/1-js/05-data-types/03-string/3-truncate/task.md index 6382029f4..c99a5f15a 100644 --- a/1-js/05-data-types/03-string/3-truncate/task.md +++ b/1-js/05-data-types/03-string/3-truncate/task.md @@ -11,7 +11,7 @@ The result of the function should be the truncated (if needed) string. For instance: ```js -truncate("What I'd like to tell on this topic is:", 20) = "What I'd like to te…" +truncate("What I'd like to tell on this topic is:", 20) == "What I'd like to te…" -truncate("Hi everyone!", 20) = "Hi everyone!" +truncate("Hi everyone!", 20) == "Hi everyone!" ``` diff --git a/1-js/05-data-types/03-string/article.md b/1-js/05-data-types/03-string/article.md index 41bda2254..60ce2b6f0 100644 --- a/1-js/05-data-types/03-string/article.md +++ b/1-js/05-data-types/03-string/article.md @@ -48,9 +48,9 @@ let guestList = "Guests: // Error: Unexpected token ILLEGAL * John"; ``` -Single and double quotes come from ancient times of language creation when the need for multiline strings was not taken into account. Backticks appeared much later and thus are more versatile. +Single and double quotes come from ancient times of language creation, when the need for multiline strings was not taken into account. Backticks appeared much later and thus are more versatile. -Backticks also allow us to specify a "template function" before the first backtick. The syntax is: func`string`. The function `func` is called automatically, receives the string and embedded expressions and can process them. This is called "tagged templates". This feature makes it easier to implement custom templating, but is rarely used in practice. You can read more about it in the [manual](mdn:/JavaScript/Reference/Template_literals#Tagged_templates). +Backticks also allow us to specify a "template function" before the first backtick. The syntax is: func`string`. The function `func` is called automatically, receives the string and embedded expressions and can process them. This feature is called "tagged templates", it's rarely seen, but you can read about it in the MDN: [Template literals](mdn:/JavaScript/Reference/Template_literals#Tagged_templates). ## Special characters @@ -59,10 +59,10 @@ It is still possible to create multiline strings with single and double quotes b ```js run let guestList = "Guests:\n * John\n * Pete\n * Mary"; -alert(guestList); // a multiline list of guests +alert(guestList); // a multiline list of guests, same as above ``` -For example, these two lines are equal, just written differently: +As a simpler example, these two lines are equal, just written differently: ```js run let str1 = "Hello\nWorld"; // two lines using a "newline symbol" @@ -74,33 +74,26 @@ World`; alert(str1 == str2); // true ``` -There are other, less common "special" characters. - -Here's the full list: +There are other, less common special characters: | Character | Description | |-----------|-------------| |`\n`|New line| |`\r`|In Windows text files a combination of two characters `\r\n` represents a new break, while on non-Windows OS it's just `\n`. That's for historical reasons, most Windows software also understands `\n`. | -|`\'`, `\"`|Quotes| +|`\'`, `\"`, \\`|Quotes| |`\\`|Backslash| |`\t`|Tab| -|`\b`, `\f`, `\v`| Backspace, Form Feed, Vertical Tab -- kept for compatibility, not used nowadays. | -|`\xXX`|Unicode character with the given hexadecimal Unicode `XX`, e.g. `'\x7A'` is the same as `'z'`.| -|`\uXXXX`|A Unicode symbol with the hex code `XXXX` in UTF-16 encoding, for instance `\u00A9` -- is a Unicode for the copyright symbol `©`. It must be exactly 4 hex digits. | -|`\u{X…XXXXXX}` (1 to 6 hex characters)|A Unicode symbol with the given UTF-32 encoding. Some rare characters are encoded with two Unicode symbols, taking 4 bytes. This way we can insert long codes. | +|`\b`, `\f`, `\v`| Backspace, Form Feed, Vertical Tab -- mentioned for completeness, coming from old times, not used nowadays (you can forget them right now). | + +As you can see, all special characters start with a backslash character `\`. It is also called an "escape character". -Examples with Unicode: +Because it's so special, if we need to show an actual backslash `\` within the string, we need to double it: ```js run -alert( "\u00A9" ); // © -alert( "\u{20331}" ); // 佫, a rare Chinese hieroglyph (long Unicode) -alert( "\u{1F60D}" ); // 😍, a smiling face symbol (another long Unicode) +alert( `The backslash: \\` ); // The backslash: \ ``` -All special characters start with a backslash character `\`. It is also called an "escape character". - -We might also use it if we wanted to insert a quote into the string. +So-called "escaped" quotes `\'`, `\"`, \\` are used to insert a quote into the same-quoted string. For instance: @@ -113,18 +106,10 @@ As you can see, we have to prepend the inner quote by the backslash `\'`, becaus Of course, only the quotes that are the same as the enclosing ones need to be escaped. So, as a more elegant solution, we could switch to double quotes or backticks instead: ```js run -alert( `I'm the Walrus!` ); // I'm the Walrus! +alert( "I'm the Walrus!" ); // I'm the Walrus! ``` -Note that the backslash `\` serves for the correct reading of the string by JavaScript, then disappears. The in-memory string has no `\`. You can clearly see that in `alert` from the examples above. - -But what if we need to show an actual backslash `\` within the string? - -That's possible, but we need to double it like `\\`: - -```js run -alert( `The backslash: \\` ); // The backslash: \ -``` +Besides these special characters, there's also a special notation for Unicode codes `\u…`, it's rarely used and is covered in the optional chapter about [Unicode](info:unicode). ## String length @@ -139,33 +124,36 @@ Note that `\n` is a single "special" character, so the length is indeed `3`. ```warn header="`length` is a property" People with a background in some other languages sometimes mistype by calling `str.length()` instead of just `str.length`. That doesn't work. -Please note that `str.length` is a numeric property, not a function. There is no need to add parenthesis after it. +Please note that `str.length` is a numeric property, not a function. There is no need to add parenthesis after it. Not `.length()`, but `.length`. ``` ## Accessing characters -To get a character at position `pos`, use square brackets `[pos]` or call the method [str.charAt(pos)](mdn:js/String/charAt). The first character starts from the zero position: +To get a character at position `pos`, use square brackets `[pos]` or call the method [str.at(pos)](mdn:js/String/at). The first character starts from the zero position: ```js run let str = `Hello`; // the first character alert( str[0] ); // H -alert( str.charAt(0) ); // H +alert( str.at(0) ); // H // the last character alert( str[str.length - 1] ); // o +alert( str.at(-1) ); ``` -The square brackets are a modern way of getting a character, while `charAt` exists mostly for historical reasons. +As you can see, the `.at(pos)` method has a benefit of allowing negative position. If `pos` is negative, then it's counted from the end of the string. -The only difference between them is that if no character is found, `[]` returns `undefined`, and `charAt` returns an empty string: +So `.at(-1)` means the last character, and `.at(-2)` is the one before it, etc. + +The square brackets always return `undefined` for negative indexes, for instance: ```js run let str = `Hello`; -alert( str[1000] ); // undefined -alert( str.charAt(1000) ); // '' (an empty string) +alert( str[-2] ); // undefined +alert( str.at(-2) ); // l ``` We can also iterate over characters using `for..of`: @@ -214,7 +202,7 @@ alert( 'Interface'.toLowerCase() ); // interface Or, if we want a single character lowercased: -```js +```js run alert( 'Interface'[0].toLowerCase() ); // 'i' ``` @@ -310,45 +298,6 @@ if (str.indexOf("Widget") != -1) { } ``` -#### The bitwise NOT trick - -One of the old tricks used here is the [bitwise NOT](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_NOT) `~` operator. It converts the number to a 32-bit integer (removes the decimal part if exists) and then reverses all bits in its binary representation. - -In practice, that means a simple thing: for 32-bit integers `~n` equals `-(n+1)`. - -For instance: - -```js run -alert( ~2 ); // -3, the same as -(2+1) -alert( ~1 ); // -2, the same as -(1+1) -alert( ~0 ); // -1, the same as -(0+1) -*!* -alert( ~-1 ); // 0, the same as -(-1+1) -*/!* -``` - -As we can see, `~n` is zero only if `n == -1` (that's for any 32-bit signed integer `n`). - -So, the test `if ( ~str.indexOf("...") )` is truthy only if the result of `indexOf` is not `-1`. In other words, when there is a match. - -People use it to shorten `indexOf` checks: - -```js run -let str = "Widget"; - -if (~str.indexOf("Widget")) { - alert( 'Found it!' ); // works -} -``` - -It is usually not recommended to use language features in a non-obvious way, but this particular trick is widely used in old code, so we should understand it. - -Just remember: `if (~str.indexOf(...))` reads as "if found". - -To be precise though, as big numbers are truncated to 32 bits by `~` operator, there exist other numbers that give `0`, the smallest is `~4294967295=0`. That makes such check correct only if a string is not that long. - -Right now we can see this trick only in the old code, as modern JavaScript provides `.includes` method (see below). - ### includes, startsWith, endsWith The more modern method [str.includes(substr, pos)](mdn:js/String/includes) returns `true/false` depending on whether `str` contains `substr` within. @@ -371,8 +320,8 @@ alert( "Widget".includes("id", 3) ); // false, from position 3 there is no "id" The methods [str.startsWith](mdn:js/String/startsWith) and [str.endsWith](mdn:js/String/endsWith) do exactly what they say: ```js run -alert( "Widget".startsWith("Wid") ); // true, "Widget" starts with "Wid" -alert( "Widget".endsWith("get") ); // true, "Widget" ends with "get" +alert( "*!*Wid*/!*get".startsWith("Wid") ); // true, "Widget" starts with "Wid" +alert( "Wid*!*get*/!*".endsWith("get") ); // true, "Widget" ends with "get" ``` ## Getting a substring @@ -407,9 +356,9 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and ``` `str.substring(start [, end])` -: Returns the part of the string *between* `start` and `end`. +: Returns the part of the string *between* `start` and `end` (not including `end`). - This is almost the same as `slice`, but it allows `start` to be greater than `end`. + This is almost the same as `slice`, but it allows `start` to be greater than `end` (in this case it simply swaps `start` and `end` values). For instance: @@ -445,18 +394,22 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and alert( str.substr(-4, 2) ); // 'gi', from the 4th position get 2 characters ``` + This method resides in the [Annex B](https://tc39.es/ecma262/#sec-string.prototype.substr) of the language specification. It means that only browser-hosted Javascript engines should support it, and it's not recommended to use it. In practice, it's supported everywhere. + Let's recap these methods to avoid any confusion: | method | selects... | negatives | |--------|-----------|-----------| | `slice(start, end)` | from `start` to `end` (not including `end`) | allows negatives | -| `substring(start, end)` | between `start` and `end` | negative values mean `0` | +| `substring(start, end)` | between `start` and `end` (not including `end`)| negative values mean `0` | | `substr(start, length)` | from `start` get `length` characters | allows negative `start` | ```smart header="Which one to choose?" All of them can do the job. Formally, `substr` has a minor drawback: it is described not in the core JavaScript specification, but in Annex B, which covers browser-only features that exist mainly for historical reasons. So, non-browser environments may fail to support it. But in practice it works everywhere. -Of the other two variants, `slice` is a little bit more flexible, it allows negative arguments and shorter to write. So, it's enough to remember solely `slice` of these three methods. +Of the other two variants, `slice` is a little bit more flexible, it allows negative arguments and shorter to write. + +So, for practical use it's enough to remember only `slice`. ``` ## Comparing strings @@ -479,17 +432,18 @@ Although, there are some oddities. This may lead to strange results if we sort these country names. Usually people would expect `Zealand` to come after `Österreich` in the list. -To understand what happens, let's review the internal representation of strings in JavaScript. +To understand what happens, we should be aware that strings in Javascript are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). That is: each character has a corresponding numeric code. -All strings are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). That is: each character has a corresponding numeric code. There are special methods that allow to get the character for the code and back. +There are special methods that allow to get the character for the code and back: `str.codePointAt(pos)` -: Returns the code for the character at position `pos`: +: Returns a decimal number representing the code for the character at position `pos`: ```js run // different case letters have different codes - alert( "z".codePointAt(0) ); // 122 alert( "Z".codePointAt(0) ); // 90 + alert( "z".codePointAt(0) ); // 122 + alert( "z".codePointAt(0).toString(16) ); // 7a (if we need a hexadecimal value) ``` `String.fromCodePoint(code)` @@ -497,13 +451,7 @@ All strings are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). Th ```js run alert( String.fromCodePoint(90) ); // Z - ``` - - We can also add Unicode characters by their codes using `\u` followed by the hex code: - - ```js run - // 90 is 5a in hexadecimal system - alert( '\u005a' ); // Z + alert( String.fromCodePoint(0x5a) ); // Z (we can also use a hex value as an argument) ``` Now let's see the characters with codes `65..220` (the latin alphabet and a little bit extra) by making a string of them: @@ -515,6 +463,7 @@ for (let i = 65; i <= 220; i++) { str += String.fromCodePoint(i); } alert( str ); +// Output: // ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„ // ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜ ``` @@ -534,7 +483,7 @@ The "right" algorithm to do string comparisons is more complex than it may seem, So, the browser needs to know the language to compare. -Luckily, all modern browsers (IE10- requires the additional library [Intl.js](https://github.com/andyearnshaw/Intl.js/)) support the internationalization standard [ECMA-402](http://www.ecma-international.org/ecma-402/1.0/ECMA-402.pdf). +Luckily, modern browsers support the internationalization standard [ECMA-402](https://www.ecma-international.org/publications-and-standards/standards/ecma-402/). It provides a special method to compare strings in different languages, following their rules. @@ -552,119 +501,11 @@ alert( 'Österreich'.localeCompare('Zealand') ); // -1 This method actually has two additional arguments specified in [the documentation](mdn:js/String/localeCompare), which allows it to specify the language (by default taken from the environment, letter order depends on the language) and setup additional rules like case sensitivity or should `"a"` and `"á"` be treated as the same etc. -## Internals, Unicode - -```warn header="Advanced knowledge" -The section goes deeper into string internals. This knowledge will be useful for you if you plan to deal with emoji, rare mathematical or hieroglyphic characters or other rare symbols. - -You can skip the section if you don't plan to support them. -``` - -### Surrogate pairs - -All frequently used characters have 2-byte codes. Letters in most european languages, numbers, and even most hieroglyphs, have a 2-byte representation. - -But 2 bytes only allow 65536 combinations and that's not enough for every possible symbol. So rare symbols are encoded with a pair of 2-byte characters called "a surrogate pair". - -The length of such symbols is `2`: - -```js run -alert( '𝒳'.length ); // 2, MATHEMATICAL SCRIPT CAPITAL X -alert( '😂'.length ); // 2, FACE WITH TEARS OF JOY -alert( '𩷶'.length ); // 2, a rare Chinese hieroglyph -``` - -Note that surrogate pairs did not exist at the time when JavaScript was created, and thus are not correctly processed by the language! - -We actually have a single symbol in each of the strings above, but the `length` shows a length of `2`. - -`String.fromCodePoint` and `str.codePointAt` are few rare methods that deal with surrogate pairs right. They recently appeared in the language. Before them, there were only [String.fromCharCode](mdn:js/String/fromCharCode) and [str.charCodeAt](mdn:js/String/charCodeAt). These methods are actually the same as `fromCodePoint/codePointAt`, but don't work with surrogate pairs. - -Getting a symbol can be tricky, because surrogate pairs are treated as two characters: - -```js run -alert( '𝒳'[0] ); // strange symbols... -alert( '𝒳'[1] ); // ...pieces of the surrogate pair -``` - -Note that pieces of the surrogate pair have no meaning without each other. So the alerts in the example above actually display garbage. - -Technically, surrogate pairs are also detectable by their codes: if a character has the code in the interval of `0xd800..0xdbff`, then it is the first part of the surrogate pair. The next character (second part) must have the code in interval `0xdc00..0xdfff`. These intervals are reserved exclusively for surrogate pairs by the standard. - -In the case above: - -```js run -// charCodeAt is not surrogate-pair aware, so it gives codes for parts - -alert( '𝒳'.charCodeAt(0).toString(16) ); // d835, between 0xd800 and 0xdbff -alert( '𝒳'.charCodeAt(1).toString(16) ); // dcb3, between 0xdc00 and 0xdfff -``` - -You will find more ways to deal with surrogate pairs later in the chapter . There are probably special libraries for that too, but nothing famous enough to suggest here. - -### Diacritical marks and normalization - -In many languages there are symbols that are composed of the base character with a mark above/under it. - -For instance, the letter `a` can be the base character for: `àáâäãåā`. Most common "composite" character have their own code in the UTF-16 table. But not all of them, because there are too many possible combinations. - -To support arbitrary compositions, UTF-16 allows us to use several Unicode characters: the base character followed by one or many "mark" characters that "decorate" it. - -For instance, if we have `S` followed by the special "dot above" character (code `\u0307`), it is shown as Ṡ. - -```js run -alert( 'S\u0307' ); // Ṡ -``` - -If we need an additional mark above the letter (or below it) -- no problem, just add the necessary mark character. - -For instance, if we append a character "dot below" (code `\u0323`), then we'll have "S with dots above and below": `Ṩ`. - -For example: - -```js run -alert( 'S\u0307\u0323' ); // Ṩ -``` - -This provides great flexibility, but also an interesting problem: two characters may visually look the same, but be represented with different Unicode compositions. - -For instance: - -```js run -let s1 = 'S\u0307\u0323'; // Ṩ, S + dot above + dot below -let s2 = 'S\u0323\u0307'; // Ṩ, S + dot below + dot above - -alert( `s1: ${s1}, s2: ${s2}` ); - -alert( s1 == s2 ); // false though the characters look identical (?!) -``` - -To solve this, there exists a "Unicode normalization" algorithm that brings each string to the single "normal" form. - -It is implemented by [str.normalize()](mdn:js/String/normalize). - -```js run -alert( "S\u0307\u0323".normalize() == "S\u0323\u0307".normalize() ); // true -``` - -It's funny that in our situation `normalize()` actually brings together a sequence of 3 characters to one: `\u1e68` (S with two dots). - -```js run -alert( "S\u0307\u0323".normalize().length ); // 1 - -alert( "S\u0307\u0323".normalize() == "\u1e68" ); // true -``` - -In reality, this is not always the case. The reason being that the symbol `Ṩ` is "common enough", so UTF-16 creators included it in the main table and gave it the code. - -If you want to learn more about normalization rules and variants -- they are described in the appendix of the Unicode standard: [Unicode Normalization Forms](http://www.unicode.org/reports/tr15/), but for most practical purposes the information from this section is enough. - ## Summary - There are 3 types of quotes. Backticks allow a string to span multiple lines and embed expressions `${…}`. -- Strings in JavaScript are encoded using UTF-16. -- We can use special characters like `\n` and insert letters by their Unicode using `\u...`. -- To get a character, use: `[]`. +- We can use special characters, such as a line break `\n`. +- To get a character, use: `[]` or `at` method. - To get a substring, use: `slice` or `substring`. - To lowercase/uppercase a string, use: `toLowerCase/toUpperCase`. - To look for a substring, use: `indexOf`, or `includes/startsWith/endsWith` for simple checks. @@ -677,3 +518,5 @@ There are several other helpful methods in strings: - ...and more to be found in the [manual](mdn:js/String). Strings also have methods for doing search/replace with regular expressions. But that's big topic, so it's explained in a separate tutorial section . + +Also, as of now it's important to know that strings are based on Unicode encoding, and hence there're issues with comparisons. There's more about Unicode in the chapter . diff --git a/1-js/05-data-types/04-array/10-maximal-subarray/solution.md b/1-js/05-data-types/04-array/10-maximal-subarray/solution.md index befd80296..7e1ca3bde 100644 --- a/1-js/05-data-types/04-array/10-maximal-subarray/solution.md +++ b/1-js/05-data-types/04-array/10-maximal-subarray/solution.md @@ -59,7 +59,7 @@ alert( getMaxSubSum([100, -9, 2, -3, 5]) ); // 100 The solution has a time complexity of [O(n2)](https://en.wikipedia.org/wiki/Big_O_notation). In other words, if we increase the array size 2 times, the algorithm will work 4 times longer. -For big arrays (1000, 10000 or more items) such algorithms can lead to a serious sluggishness. +For big arrays (1000, 10000 or more items) such algorithms can lead to serious sluggishness. # Fast solution @@ -91,4 +91,4 @@ alert( getMaxSubSum([-1, -2, -3]) ); // 0 The algorithm requires exactly 1 array pass, so the time complexity is O(n). -You can find more detail information about the algorithm here: [Maximum subarray problem](http://en.wikipedia.org/wiki/Maximum_subarray_problem). If it's still not obvious why that works, then please trace the algorithm on the examples above, see how it works, that's better than any words. +You can find more detailed information about the algorithm here: [Maximum subarray problem](http://en.wikipedia.org/wiki/Maximum_subarray_problem). If it's still not obvious why that works, then please trace the algorithm on the examples above, see how it works, that's better than any words. diff --git a/1-js/05-data-types/04-array/2-create-array/task.md b/1-js/05-data-types/04-array/2-create-array/task.md index 16d14071f..d4551c79c 100644 --- a/1-js/05-data-types/04-array/2-create-array/task.md +++ b/1-js/05-data-types/04-array/2-create-array/task.md @@ -8,7 +8,7 @@ Let's try 5 array operations. 1. Create an array `styles` with items "Jazz" and "Blues". 2. Append "Rock-n-Roll" to the end. -3. Replace the value in the middle by "Classics". Your code for finding the middle value should work for any arrays with odd length. +3. Replace the value in the middle with "Classics". Your code for finding the middle value should work for any arrays with odd length. 4. Strip off the first value of the array and show it. 5. Prepend `Rap` and `Reggae` to the array. diff --git a/1-js/05-data-types/04-array/article.md b/1-js/05-data-types/04-array/article.md index 95a78f29a..e71e86a5b 100644 --- a/1-js/05-data-types/04-array/article.md +++ b/1-js/05-data-types/04-array/article.md @@ -96,9 +96,9 @@ The "trailing comma" style makes it easier to insert/remove items, because all l [recent browser="new"] -Let's say we want a last element of the array. +Let's say we want the last element of the array. -Some programming languages allow to use negative indexes for the same purpose, like `fruits[-1]`. +Some programming languages allow the use of negative indexes for the same purpose, like `fruits[-1]`. Although, in JavaScript it won't work. The result will be `undefined`, because the index in square brackets is treated literally. @@ -153,9 +153,9 @@ A stack is usually illustrated as a pack of cards: new cards are added to the to For stacks, the latest pushed item is received first, that's also called LIFO (Last-In-First-Out) principle. For queues, we have FIFO (First-In-First-Out). -Arrays in JavaScript can work both as a queue and as a stack. They allow you to add/remove elements both to/from the beginning or the end. +Arrays in JavaScript can work both as a queue and as a stack. They allow you to add/remove elements, both to/from the beginning or the end. -In computer science the data structure that allows this, is called [deque](https://en.wikipedia.org/wiki/Double-ended_queue). +In computer science, the data structure that allows this, is called [deque](https://en.wikipedia.org/wiki/Double-ended_queue). **Methods that work with the end of the array:** @@ -281,7 +281,7 @@ Why is it faster to work with the end of an array than with its beginning? Let's fruits.shift(); // take 1 element from the start ``` -It's not enough to take and remove the element with the number `0`. Other elements need to be renumbered as well. +It's not enough to take and remove the element with the index `0`. Other elements need to be renumbered as well. The `shift` operation must do 3 things: @@ -399,11 +399,11 @@ There is one more syntax to create an array: let arr = *!*new Array*/!*("Apple", "Pear", "etc"); ``` -It's rarely used, because square brackets `[]` are shorter. Also there's a tricky feature with it. +It's rarely used, because square brackets `[]` are shorter. Also, there's a tricky feature with it. If `new Array` is called with a single argument which is a number, then it creates an array *without items, but with the given length*. -Let's see how one can shoot themself in the foot: +Let's see how one can shoot themselves in the foot: ```js run let arr = new Array(2); // will it create an array of [2] ? @@ -426,7 +426,7 @@ let matrix = [ [7, 8, 9] ]; -alert( matrix[1][1] ); // 5, the central element +alert( matrix[0][1] ); // 2, the second value of the first inner array ``` ## toString @@ -512,21 +512,26 @@ That's simple: don't use the `==` operator. Instead, compare them item-by-item i Array is a special kind of object, suited to storing and managing ordered data items. -- The declaration: +The declaration: - ```js - // square brackets (usual) - let arr = [item1, item2...]; +```js +// square brackets (usual) +let arr = [item1, item2...]; - // new Array (exceptionally rare) - let arr = new Array(item1, item2...); - ``` +// new Array (exceptionally rare) +let arr = new Array(item1, item2...); +``` - The call to `new Array(number)` creates an array with the given length, but without elements. +The call to `new Array(number)` creates an array with the given length, but without elements. - The `length` property is the array length or, to be precise, its last numeric index plus one. It is auto-adjusted by array methods. - If we shorten `length` manually, the array is truncated. +Getting the elements: + +- we can get element by its index, like `arr[0]` +- also we can use `at(i)` method that allows negative indexes. For negative values of `i`, it steps back from the end of the array. If `i >= 0`, it works same as `arr[i]`. + We can use an array as a deque with the following operations: - `push(...items)` adds `items` to the end. diff --git a/1-js/05-data-types/05-array-methods/article.md b/1-js/05-data-types/05-array-methods/article.md index b14e9a0be..853645958 100644 --- a/1-js/05-data-types/05-array-methods/article.md +++ b/1-js/05-data-types/05-array-methods/article.md @@ -1,6 +1,6 @@ # Array methods -Arrays provide a lot of methods. To make things easier, in this chapter they are split into groups. +Arrays provide a lot of methods. To make things easier, in this chapter, they are split into groups. ## Add/remove items @@ -32,11 +32,11 @@ alert( arr.length ); // 3 The element was removed, but the array still has 3 elements, we can see that `arr.length == 3`. -That's natural, because `delete obj.key` removes a value by the `key`. It's all it does. Fine for objects. But for arrays we usually want the rest of elements to shift and occupy the freed place. We expect to have a shorter array now. +That's natural, because `delete obj.key` removes a value by the `key`. It's all it does. Fine for objects. But for arrays we usually want the rest of the elements to shift and occupy the freed place. We expect to have a shorter array now. So, special methods should be used. -The [arr.splice](mdn:js/Array/splice) method is a swiss army knife for arrays. It can do everything: insert, remove and replace elements. +The [arr.splice](mdn:js/Array/splice) method is a Swiss army knife for arrays. It can do everything: insert, remove and replace elements. The syntax is: @@ -62,7 +62,7 @@ alert( arr ); // ["I", "JavaScript"] Easy, right? Starting from the index `1` it removed `1` element. -In the next example we remove 3 elements and replace them with the other two: +In the next example, we remove 3 elements and replace them with the other two: ```js run let arr = [*!*"I", "study", "JavaScript",*/!* "right", "now"]; @@ -84,7 +84,7 @@ let removed = arr.splice(0, 2); alert( removed ); // "I", "study" <-- array of removed elements ``` -The `splice` method is also able to insert the elements without any removals. For that we need to set `deleteCount` to `0`: +The `splice` method is also able to insert the elements without any removals. For that, we need to set `deleteCount` to `0`: ```js run let arr = ["I", "study", "JavaScript"]; @@ -114,7 +114,7 @@ alert( arr ); // 1,2,3,4,5 ### slice -The method [arr.slice](mdn:js/Array/slice) is much simpler than similar-looking `arr.splice`. +The method [arr.slice](mdn:js/Array/slice) is much simpler than the similar-looking `arr.splice`. The syntax is: @@ -124,7 +124,7 @@ arr.slice([start], [end]) It returns a new array copying to it all items from index `start` to `end` (not including `end`). Both `start` and `end` can be negative, in that case position from array end is assumed. -It's similar to a string method `str.slice`, but instead of substrings it makes subarrays. +It's similar to a string method `str.slice`, but instead of substrings, it makes subarrays. For instance: @@ -206,7 +206,7 @@ The [arr.forEach](mdn:js/Array/forEach) method allows to run a function for ever The syntax: ```js arr.forEach(function(item, index, array) { - // ... do something with item + // ... do something with an item }); ``` @@ -234,12 +234,13 @@ Now let's cover methods that search in an array. ### indexOf/lastIndexOf and includes -The methods [arr.indexOf](mdn:js/Array/indexOf), [arr.lastIndexOf](mdn:js/Array/lastIndexOf) and [arr.includes](mdn:js/Array/includes) have the same syntax and do essentially the same as their string counterparts, but operate on items instead of characters: +The methods [arr.indexOf](mdn:js/Array/indexOf) and [arr.includes](mdn:js/Array/includes) have the similar syntax and do essentially the same as their string counterparts, but operate on items instead of characters: - `arr.indexOf(item, from)` -- looks for `item` starting from index `from`, and returns the index where it was found, otherwise `-1`. -- `arr.lastIndexOf(item, from)` -- same, but looks for from right to left. - `arr.includes(item, from)` -- looks for `item` starting from index `from`, returns `true` if found. +Usually, these methods are used with only one argument: the `item` to search. By default, the search is from the beginning. + For instance: ```js run @@ -252,21 +253,33 @@ alert( arr.indexOf(null) ); // -1 alert( arr.includes(1) ); // true ``` -Note that the methods use `===` comparison. So, if we look for `false`, it finds exactly `false` and not the zero. +Please note that `indexOf` uses the strict equality `===` for comparison. So, if we look for `false`, it finds exactly `false` and not the zero. + +If we want to check if `item` exists in the array and don't need the index, then `arr.includes` is preferred. + +The method [arr.lastIndexOf](mdn:js/Array/lastIndexOf) is the same as `indexOf`, but looks for from right to left. -If we want to check for inclusion, and don't want to know the exact index, then `arr.includes` is preferred. +```js run +let fruits = ['Apple', 'Orange', 'Apple'] + +alert( fruits.indexOf('Apple') ); // 0 (first Apple) +alert( fruits.lastIndexOf('Apple') ); // 2 (last Apple) +``` -Also, a very minor difference of `includes` is that it correctly handles `NaN`, unlike `indexOf/lastIndexOf`: +````smart header="The `includes` method handles `NaN` correctly" +A minor, but noteworthy feature of `includes` is that it correctly handles `NaN`, unlike `indexOf`: ```js run const arr = [NaN]; -alert( arr.indexOf(NaN) ); // -1 (should be 0, but === equality doesn't work for NaN) +alert( arr.indexOf(NaN) ); // -1 (wrong, should be 0) alert( arr.includes(NaN) );// true (correct) ``` +That's because `includes` was added to JavaScript much later and uses the more up-to-date comparison algorithm internally. +```` -### find and findIndex +### find and findIndex/findLastIndex -Imagine we have an array of objects. How do we find an object with the specific condition? +Imagine we have an array of objects. How do we find an object with a specific condition? Here the [arr.find(fn)](mdn:js/Array/find) method comes in handy. @@ -284,7 +297,7 @@ The function is called for elements of the array, one after another: - `index` is its index. - `array` is the array itself. -If it returns `true`, the search is stopped, the `item` is returned. If nothing found, `undefined` is returned. +If it returns `true`, the search is stopped, the `item` is returned. If nothing is found, `undefined` is returned. For example, we have an array of users, each with the fields `id` and `name`. Let's find the one with `id == 1`: @@ -300,11 +313,30 @@ let user = users.find(item => item.id == 1); alert(user.name); // John ``` -In real life arrays of objects is a common thing, so the `find` method is very useful. +In real life, arrays of objects are a common thing, so the `find` method is very useful. Note that in the example we provide to `find` the function `item => item.id == 1` with one argument. That's typical, other arguments of this function are rarely used. -The [arr.findIndex](mdn:js/Array/findIndex) method is essentially the same, but it returns the index where the element was found instead of the element itself and `-1` is returned when nothing is found. +The [arr.findIndex](mdn:js/Array/findIndex) method has the same syntax but returns the index where the element was found instead of the element itself. The value of `-1` is returned if nothing is found. + +The [arr.findLastIndex](mdn:js/Array/findLastIndex) method is like `findIndex`, but searches from right to left, similar to `lastIndexOf`. + +Here's an example: + +```js run +let users = [ + {id: 1, name: "John"}, + {id: 2, name: "Pete"}, + {id: 3, name: "Mary"}, + {id: 4, name: "John"} +]; + +// Find the index of the first John +alert(users.findIndex(user => user.name == 'John')); // 0 + +// Find the index of the last John +alert(users.findLastIndex(user => user.name == 'John')); // 3 +``` ### filter @@ -389,6 +421,7 @@ Literally, all elements are converted to strings for comparisons. For strings, l To use our own sorting order, we need to supply a function as the argument of `arr.sort()`. The function should compare two arbitrary values and return: + ```js function compare(a, b) { if (a > b) return 1; // if the first value is greater than the second @@ -417,11 +450,11 @@ alert(arr); // *!*1, 2, 15*/!* Now it works as intended. -Let's step aside and think what's happening. The `arr` can be array of anything, right? It may contain numbers or strings or objects or whatever. We have a set of *some items*. To sort it, we need an *ordering function* that knows how to compare its elements. The default is a string order. +Let's step aside and think about what's happening. The `arr` can be an array of anything, right? It may contain numbers or strings or objects or whatever. We have a set of *some items*. To sort it, we need an *ordering function* that knows how to compare its elements. The default is a string order. The `arr.sort(fn)` method implements a generic sorting algorithm. We don't need to care how it internally works (an optimized [quicksort](https://en.wikipedia.org/wiki/Quicksort) or [Timsort](https://en.wikipedia.org/wiki/Timsort) most of the time). It will walk the array, compare its elements using the provided function and reorder them, all we need is to provide the `fn` which does the comparison. -By the way, if we ever want to know which elements are compared -- nothing prevents from alerting them: +By the way, if we ever want to know which elements are compared -- nothing prevents us from alerting them: ```js run [1, -2, 15, 2, 0, 8].sort(function(a, b) { @@ -493,7 +526,7 @@ Here's the situation from real life. We are writing a messaging app, and the per The [str.split(delim)](mdn:js/String/split) method does exactly that. It splits the string into an array by the given delimiter `delim`. -In the example below, we split by a comma followed by space: +In the example below, we split by a comma followed by a space: ```js run let names = 'Bilbo, Gandalf, Nazgul'; @@ -560,9 +593,9 @@ Arguments: - `index` -- is its position. - `array` -- is the array. -As function is applied, the result of the previous function call is passed to the next one as the first argument. +As the function is applied, the result of the previous function call is passed to the next one as the first argument. -So, the first argument is essentially the accumulator that stores the combined result of all previous executions. And at the end it becomes the result of `reduce`. +So, the first argument is essentially the accumulator that stores the combined result of all previous executions. And at the end, it becomes the result of `reduce`. Sounds complicated? @@ -631,8 +664,7 @@ arr.reduce((sum, current) => sum + current); So it's advised to always specify the initial value. -The method [arr.reduceRight](mdn:js/Array/reduceRight) does the same, but goes from right to left. - +The method [arr.reduceRight](mdn:js/Array/reduceRight) does the same but goes from right to left. ## Array.isArray @@ -642,7 +674,7 @@ So `typeof` does not help to distinguish a plain object from an array: ```js run alert(typeof {}); // object -alert(typeof []); // same +alert(typeof []); // object (same) ``` ...But arrays are used so often that there's a special method for that: [Array.isArray(value)](mdn:js/Array/isArray). It returns `true` if the `value` is an array, and `false` otherwise. @@ -657,7 +689,7 @@ alert(Array.isArray([])); // true Almost all array methods that call functions -- like `find`, `filter`, `map`, with a notable exception of `sort`, accept an optional additional parameter `thisArg`. -That parameter is not explained in the sections above, because it's rarely used. But for completeness we have to cover it. +That parameter is not explained in the sections above, because it's rarely used. But for completeness, we have to cover it. Here's the full syntax of these methods: @@ -717,7 +749,7 @@ A cheat sheet of array methods: - `concat(...items)` -- returns a new array: copies all members of the current one and adds `items` to it. If any of `items` is an array, then its elements are taken. - To search among elements: - - `indexOf/lastIndexOf(item, pos)` -- look for `item` starting from position `pos`, return the index or `-1` if not found. + - `indexOf/lastIndexOf(item, pos)` -- look for `item` starting from position `pos`, and return the index or `-1` if not found. - `includes(value)` -- returns `true` if the array has `value`, otherwise `false`. - `find/filter(func)` -- filter elements through the function, return first/all values that make it return `true`. - `findIndex` is like `find`, but returns the index instead of a value. @@ -733,7 +765,7 @@ A cheat sheet of array methods: - `reduce/reduceRight(func, initial)` -- calculate a single value over the array by calling `func` for each element and passing an intermediate result between the calls. - Additionally: - - `Array.isArray(arr)` checks `arr` for being an array. + - `Array.isArray(value)` checks `value` for being an array, if so returns `true`, otherwise `false`. Please note that methods `sort`, `reverse` and `splice` modify the array itself. @@ -746,6 +778,7 @@ These methods are the most used ones, they cover 99% of use cases. But there are These methods behave sort of like `||` and `&&` operators: if `fn` returns a truthy value, `arr.some()` immediately returns `true` and stops iterating over the rest of items; if `fn` returns a falsy value, `arr.every()` immediately returns `false` and stops iterating over the rest of items as well. We can use `every` to compare arrays: + ```js run function arraysEqual(arr1, arr2) { return arr1.length === arr2.length && arr1.every((value, index) => value === arr2[index]); @@ -762,7 +795,7 @@ These methods are the most used ones, they cover 99% of use cases. But there are For the full list, see the [manual](mdn:js/Array). -From the first sight it may seem that there are so many methods, quite difficult to remember. But actually that's much easier. +At first sight, it may seem that there are so many methods, quite difficult to remember. But actually, that's much easier. Look through the cheat sheet just to be aware of them. Then solve the tasks of this chapter to practice, so that you have experience with array methods. diff --git a/1-js/05-data-types/06-iterable/article.md b/1-js/05-data-types/06-iterable/article.md index ce9074cc7..e2c0d4f97 100644 --- a/1-js/05-data-types/06-iterable/article.md +++ b/1-js/05-data-types/06-iterable/article.md @@ -174,7 +174,7 @@ When we use JavaScript for practical tasks in a browser or any other environment For instance, strings are both iterable (`for..of` works on them) and array-like (they have numeric indexes and `length`). -But an iterable may be not array-like. And vice versa an array-like may be not iterable. +But an iterable may not be array-like. And vice versa an array-like may not be iterable. For example, the `range` in the example above is iterable, but not array-like, because it does not have indexed properties and `length`. @@ -218,7 +218,7 @@ alert(arr.pop()); // World (method works) The same happens for an iterable: -```js +```js run // assuming that range is taken from the example above let arr = Array.from(range); alert(arr); // 1,2,3,4,5 (array toString conversion works) @@ -233,7 +233,7 @@ The optional second argument `mapFn` can be a function that will be applied to e For instance: -```js +```js run // assuming that range is taken from the example above // square each number diff --git a/1-js/05-data-types/07-map-set/article.md b/1-js/05-data-types/07-map-set/article.md index bd6cad562..37f5e48c2 100644 --- a/1-js/05-data-types/07-map-set/article.md +++ b/1-js/05-data-types/07-map-set/article.md @@ -10,17 +10,17 @@ But that's not enough for real life. That's why `Map` and `Set` also exist. ## Map -[Map](mdn:js/Map) is a collection of keyed data items, just like an `Object`. But the main difference is that `Map` allows keys of any type. +[Map](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) is a collection of keyed data items, just like an `Object`. But the main difference is that `Map` allows keys of any type. Methods and properties are: -- `new Map()` -- creates the map. -- `map.set(key, value)` -- stores the value by the key. -- `map.get(key)` -- returns the value by the key, `undefined` if `key` doesn't exist in map. -- `map.has(key)` -- returns `true` if the `key` exists, `false` otherwise. -- `map.delete(key)` -- removes the value by the key. -- `map.clear()` -- removes everything from the map. -- `map.size` -- returns the current element count. +- [`new Map()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/Map) -- creates the map. +- [`map.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set) -- stores the value by the key. +- [`map.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get) -- returns the value by the key, `undefined` if `key` doesn't exist in map. +- [`map.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/has) -- returns `true` if the `key` exists, `false` otherwise. +- [`map.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/delete) -- removes the element (the key/value pair) by the key. +- [`map.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/clear) -- removes everything from the map. +- [`map.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size) -- returns the current element count. For instance: @@ -100,14 +100,13 @@ map.set('1', 'str1') ``` ```` - ## Iteration over Map For looping over a `map`, there are 3 methods: -- `map.keys()` -- returns an iterable for keys, -- `map.values()` -- returns an iterable for values, -- `map.entries()` -- returns an iterable for entries `[key, value]`, it's used by default in `for..of`. +- [`map.keys()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/keys) -- returns an iterable for keys, +- [`map.values()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/values) -- returns an iterable for values, +- [`map.entries()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/entries) -- returns an iterable for entries `[key, value]`, it's used by default in `for..of`. For instance: @@ -162,7 +161,7 @@ let map = new Map([ alert( map.get('1') ); // str1 ``` -If we have a plain object, and we'd like to create a `Map` from it, then we can use built-in method [Object.entries(obj)](mdn:js/Object/entries) that returns an array of key/value pairs for an object exactly in that format. +If we have a plain object, and we'd like to create a `Map` from it, then we can use built-in method [Object.entries(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/entries) that returns an array of key/value pairs for an object exactly in that format. So we can create a map from an object like this: @@ -233,16 +232,16 @@ That's the same, because `Object.fromEntries` expects an iterable object as the ## Set -A `Set` is a special type collection - "set of values" (without keys), where each value may occur only once. +A [`Set`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set) is a special type collection - "set of values" (without keys), where each value may occur only once. Its main methods are: -- `new Set(iterable)` -- creates the set, and if an `iterable` object is provided (usually an array), copies values from it into the set. -- `set.add(value)` -- adds a value, returns the set itself. -- `set.delete(value)` -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. -- `set.has(value)` -- returns `true` if the value exists in the set, otherwise `false`. -- `set.clear()` -- removes everything from the set. -- `set.size` -- is the elements count. +- [`new Set([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/Set) -- creates the set, and if an `iterable` object is provided (usually an array), copies values from it into the set. +- [`set.add(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/add) -- adds a value, returns the set itself. +- [`set.delete(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/delete) -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. +- [`set.has(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/has) -- returns `true` if the value exists in the set, otherwise `false`. +- [`set.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/clear) -- removes everything from the set. +- [`set.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/size) -- is the elements count. The main feature is that repeated calls of `set.add(value)` with the same value don't do anything. That's the reason why each value appears in a `Set` only once. @@ -272,7 +271,7 @@ for (let user of set) { } ``` -The alternative to `Set` could be an array of users, and the code to check for duplicates on every insertion using [arr.find](mdn:js/Array/find). But the performance would be much worse, because this method walks through the whole array checking every element. `Set` is much better optimized internally for uniqueness checks. +The alternative to `Set` could be an array of users, and the code to check for duplicates on every insertion using [arr.find](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find). But the performance would be much worse, because this method walks through the whole array checking every element. `Set` is much better optimized internally for uniqueness checks. ## Iteration over Set @@ -291,42 +290,42 @@ set.forEach((value, valueAgain, set) => { Note the funny thing. The callback function passed in `forEach` has 3 arguments: a `value`, then *the same value* `valueAgain`, and then the target object. Indeed, the same value appears in the arguments twice. -That's for compatibility with `Map` where the callback passed `forEach` has three arguments. Looks a bit strange, for sure. But may help to replace `Map` with `Set` in certain cases with ease, and vice versa. +That's for compatibility with `Map` where the callback passed `forEach` has three arguments. Looks a bit strange, for sure. But this may help to replace `Map` with `Set` in certain cases with ease, and vice versa. The same methods `Map` has for iterators are also supported: -- `set.keys()` -- returns an iterable object for values, -- `set.values()` -- same as `set.keys()`, for compatibility with `Map`, -- `set.entries()` -- returns an iterable object for entries `[value, value]`, exists for compatibility with `Map`. +- [`set.keys()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/keys) -- returns an iterable object for values, +- [`set.values()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/values) -- same as `set.keys()`, for compatibility with `Map`, +- [`set.entries()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/entries) -- returns an iterable object for entries `[value, value]`, exists for compatibility with `Map`. ## Summary -`Map` -- is a collection of keyed values. +[`Map`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) -- is a collection of keyed values. Methods and properties: -- `new Map([iterable])` -- creates the map, with optional `iterable` (e.g. array) of `[key,value]` pairs for initialization. -- `map.set(key, value)` -- stores the value by the key, returns the map itself. -- `map.get(key)` -- returns the value by the key, `undefined` if `key` doesn't exist in map. -- `map.has(key)` -- returns `true` if the `key` exists, `false` otherwise. -- `map.delete(key)` -- removes the value by the key, returns `true` if `key` existed at the moment of the call, otherwise `false`. -- `map.clear()` -- removes everything from the map. -- `map.size` -- returns the current element count. +- [`new Map([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/Map) -- creates the map, with optional `iterable` (e.g. array) of `[key,value]` pairs for initialization. +- [`map.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set) -- stores the value by the key, returns the map itself. +- [`map.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get) -- returns the value by the key, `undefined` if `key` doesn't exist in map. +- [`map.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/has) -- returns `true` if the `key` exists, `false` otherwise. +- [`map.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/delete) -- removes the element by the key, returns `true` if `key` existed at the moment of the call, otherwise `false`. +- [`map.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/clear) -- removes everything from the map. +- [`map.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size) -- returns the current element count. The differences from a regular `Object`: - Any keys, objects can be keys. - Additional convenient methods, the `size` property. -`Set` -- is a collection of unique values. +[`Set`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set) -- is a collection of unique values. Methods and properties: -- `new Set([iterable])` -- creates the set, with optional `iterable` (e.g. array) of values for initialization. -- `set.add(value)` -- adds a value (does nothing if `value` exists), returns the set itself. -- `set.delete(value)` -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. -- `set.has(value)` -- returns `true` if the value exists in the set, otherwise `false`. -- `set.clear()` -- removes everything from the set. -- `set.size` -- is the elements count. +- [`new Set([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/Set) -- creates the set, with optional `iterable` (e.g. array) of values for initialization. +- [`set.add(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/add) -- adds a value (does nothing if `value` exists), returns the set itself. +- [`set.delete(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/delete) -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. +- [`set.has(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/has) -- returns `true` if the value exists in the set, otherwise `false`. +- [`set.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/clear) -- removes everything from the set. +- [`set.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/size) -- is the elements count. Iteration over `Map` and `Set` is always in the insertion order, so we can't say that these collections are unordered, but we can't reorder elements or directly get an element by its number. diff --git a/1-js/05-data-types/08-weakmap-weakset/article.md b/1-js/05-data-types/08-weakmap-weakset/article.md index 8d5a86981..9795017d4 100644 --- a/1-js/05-data-types/08-weakmap-weakset/article.md +++ b/1-js/05-data-types/08-weakmap-weakset/article.md @@ -1,8 +1,10 @@ + # WeakMap and WeakSet As we know from the chapter , JavaScript engine keeps a value in memory while it is "reachable" and can potentially be used. For instance: + ```js let john = { name: "John" }; @@ -54,13 +56,13 @@ john = null; // overwrite the reference */!* ``` -`WeakMap` is fundamentally different in this aspect. It doesn't prevent garbage-collection of key objects. +[`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is fundamentally different in this aspect. It doesn't prevent garbage-collection of key objects. Let's see what it means on examples. ## WeakMap -The first difference between `Map` and `WeakMap` is that keys must be objects, not primitive values: +The first difference between [`Map`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) and [`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is that keys must be objects, not primitive values: ```js run let weakMap = new WeakMap(); @@ -94,10 +96,10 @@ Compare it with the regular `Map` example above. Now if `john` only exists as th `WeakMap` has only the following methods: -- `weakMap.get(key)` -- `weakMap.set(key, value)` -- `weakMap.delete(key)` -- `weakMap.has(key)` +- [`weakMap.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/set) +- [`weakMap.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/get) +- [`weakMap.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/delete) +- [`weakMap.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/has) Why such a limitation? That's for technical reasons. If an object has lost all other references (like `john` in the code above), then it is to be garbage-collected automatically. But technically it's not exactly specified *when the cleanup happens*. @@ -182,6 +184,7 @@ function process(obj) { let result = /* calculations of the result for */ obj; cache.set(obj, result); + return result; } return cache.get(obj); @@ -221,6 +224,7 @@ function process(obj) { let result = /* calculate the result for */ obj; cache.set(obj, result); + return result; } return cache.get(obj); @@ -242,11 +246,11 @@ obj = null; ## WeakSet -`WeakSet` behaves similarly: +[`WeakSet`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet) behaves similarly: - It is analogous to `Set`, but we may only add objects to `WeakSet` (not primitives). - An object exists in the set while it is reachable from somewhere else. -- Like `Set`, it supports `add`, `has` and `delete`, but not `size`, `keys()` and no iterations. +- Like `Set`, it supports [`add`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/add), [`has`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/has) and [`delete`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/delete), but not `size`, `keys()` and no iterations. Being "weak", it also serves as additional storage. But not for arbitrary data, rather for "yes/no" facts. A membership in `WeakSet` may mean something about the object. @@ -280,9 +284,9 @@ The most notable limitation of `WeakMap` and `WeakSet` is the absence of iterati ## Summary -`WeakMap` is `Map`-like collection that allows only objects as keys and removes them together with associated value once they become inaccessible by other means. +[`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is `Map`-like collection that allows only objects as keys and removes them together with associated value once they become inaccessible by other means. -`WeakSet` is `Set`-like collection that stores only objects and removes them once they become inaccessible by other means. +[`WeakSet`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet) is `Set`-like collection that stores only objects and removes them once they become inaccessible by other means. Their main advantages are that they have weak reference to objects, so they can easily be removed by garbage collector. diff --git a/1-js/05-data-types/10-destructuring-assignment/article.md b/1-js/05-data-types/10-destructuring-assignment/article.md index 41e36db2c..0c52741d1 100644 --- a/1-js/05-data-types/10-destructuring-assignment/article.md +++ b/1-js/05-data-types/10-destructuring-assignment/article.md @@ -5,18 +5,18 @@ The two most used data structures in JavaScript are `Object` and `Array`. - Objects allow us to create a single entity that stores data items by key. - Arrays allow us to gather data items into an ordered list. -Although, when we pass those to a function, it may need not be an object/array as a whole. It may need individual pieces. +However, when we pass these to a function, we may not need all of it. The function might only require certain elements or properties. *Destructuring assignment* is a special syntax that allows us to "unpack" arrays or objects into a bunch of variables, as sometimes that's more convenient. -Destructuring also works great with complex functions that have a lot of parameters, default values, and so on. Soon we'll see that. +Destructuring also works well with complex functions that have a lot of parameters, default values, and so on. Soon we'll see that. ## Array destructuring Here's an example of how an array is destructured into variables: ```js -// we have an array with the name and surname +// we have an array with a name and surname let arr = ["John", "Smith"] *!* @@ -40,10 +40,10 @@ alert(firstName); // John alert(surname); // Smith ``` -As you can see, the syntax is simple. There are several peculiar details though. Let's see more examples, to better understand it. +As you can see, the syntax is simple. There are several peculiar details though. Let's see more examples to understand it better. ````smart header="\"Destructuring\" does not mean \"destructive\"." -It's called "destructuring assignment," because it "destructurizes" by copying items into variables. But the array itself is not modified. +It's called "destructuring assignment," because it "destructurizes" by copying items into variables. However, the array itself is not modified. It's just a shorter way to write: ```js @@ -65,7 +65,7 @@ let [firstName, , title] = ["Julius", "Caesar", "Consul", "of the Roman Republic alert( title ); // Consul ``` -In the code above, the second element of the array is skipped, the third one is assigned to `title`, and the rest of the array items is also skipped (as there are no variables for them). +In the code above, the second element of the array is skipped, the third one is assigned to `title`, and the rest of the array items are also skipped (as there are no variables for them). ```` ````smart header="Works with any iterable on the right-side" @@ -95,9 +95,9 @@ alert(user.surname); // Smith ```` ````smart header="Looping with .entries()" -In the previous chapter we saw the [Object.entries(obj)](mdn:js/Object/entries) method. +In the previous chapter, we saw the [Object.entries(obj)](mdn:js/Object/entries) method. -We can use it with destructuring to loop over keys-and-values of an object: +We can use it with destructuring to loop over the keys-and-values of an object: ```js run let user = { @@ -105,7 +105,7 @@ let user = { age: 30 }; -// loop over keys-and-values +// loop over the keys-and-values *!* for (let [key, value] of Object.entries(user)) { */!* @@ -169,7 +169,7 @@ If we'd like also to gather all that follows -- we can add one more parameter th let [name1, name2, *!*...rest*/!*] = ["Julius", "Caesar", *!*"Consul", "of the Roman Republic"*/!*]; *!* -// rest is array of items, starting from the 3rd one +// rest is an array of items, starting from the 3rd one alert(rest[0]); // Consul alert(rest[1]); // of the Roman Republic alert(rest.length); // 2 @@ -187,7 +187,7 @@ let [name1, name2, *!*...titles*/!*] = ["Julius", "Caesar", "Consul", "of the Ro ### Default values -If the array is shorter than the list of variables at the left, there'll be no errors. Absent values are considered undefined: +If the array is shorter than the list of variables on the left, there will be no errors. Absent values are considered undefined: ```js run *!* @@ -418,7 +418,7 @@ alert( title ); // Menu ## Nested destructuring -If an object or an array contain other nested objects and arrays, we can use more complex left-side patterns to extract deeper portions. +If an object or an array contains other nested objects and arrays, we can use more complex left-side patterns to extract deeper portions. In the code below `options` has another object in the property `size` and an array in the property `items`. The pattern on the left side of the assignment has the same structure to extract values from them: @@ -449,7 +449,7 @@ alert(item1); // Cake alert(item2); // Donut ``` -All properties of `options` object except `extra` that is absent in the left part, are assigned to corresponding variables: +All properties of `options` object except `extra` which is absent in the left part, are assigned to corresponding variables: ![](destructuring-complex.svg) @@ -459,9 +459,9 @@ Note that there are no variables for `size` and `items`, as we take their conten ## Smart function parameters -There are times when a function has many parameters, most of which are optional. That's especially true for user interfaces. Imagine a function that creates a menu. It may have a width, a height, a title, items list and so on. +There are times when a function has many parameters, most of which are optional. That's especially true for user interfaces. Imagine a function that creates a menu. It may have a width, a height, a title, an item list and so on. -Here's a bad way to write such function: +Here's a bad way to write such a function: ```js function showMenu(title = "Untitled", width = 200, height = 100, items = []) { @@ -469,7 +469,7 @@ function showMenu(title = "Untitled", width = 200, height = 100, items = []) { } ``` -In real-life, the problem is how to remember the order of arguments. Usually IDEs try to help us, especially if the code is well-documented, but still... Another problem is how to call a function when most parameters are ok by default. +In real-life, the problem is how to remember the order of arguments. Usually, IDEs try to help us, especially if the code is well-documented, but still... Another problem is how to call a function when most parameters are ok by default. Like this? @@ -534,7 +534,7 @@ function({ }) ``` -Then, for an object of parameters, there will be a variable `varName` for property `incomingProperty`, with `defaultValue` by default. +Then, for an object of parameters, there will be a variable `varName` for the property `incomingProperty`, with `defaultValue` by default. Please note that such destructuring assumes that `showMenu()` does have an argument. If we want all values by default, then we should specify an empty object: @@ -561,7 +561,7 @@ In the code above, the whole arguments object is `{}` by default, so there's alw - Destructuring assignment allows for instantly mapping an object or array onto many variables. - The full object syntax: ```js - let {prop : varName = default, ...rest} = object + let {prop : varName = defaultValue, ...rest} = object ``` This means that property `prop` should go into the variable `varName` and, if no such property exists, then the `default` value should be used. @@ -571,9 +571,9 @@ In the code above, the whole arguments object is `{}` by default, so there's alw - The full array syntax: ```js - let [item1 = default, item2, ...rest] = array + let [item1 = defaultValue, item2, ...rest] = array ``` - The first item goes to `item1`; the second goes into `item2`, all the rest makes the array `rest`. + The first item goes to `item1`; the second goes into `item2`, and all the rest makes the array `rest`. - It's possible to extract data from nested arrays/objects, for that the left side must have the same structure as the right one. diff --git a/1-js/05-data-types/11-date/1-new-date/solution.md b/1-js/05-data-types/11-date/1-new-date/solution.md index bed449453..18286c336 100644 --- a/1-js/05-data-types/11-date/1-new-date/solution.md +++ b/1-js/05-data-types/11-date/1-new-date/solution.md @@ -13,6 +13,6 @@ We could also create a date from a string, like this: ```js run //new Date(datastring) -let d2 = new Date("February 20, 2012 03:12:00"); +let d2 = new Date("2012-02-20T03:12"); alert( d2 ); ``` diff --git a/1-js/05-data-types/11-date/article.md b/1-js/05-data-types/11-date/article.md index ed4e21359..6958a3a97 100644 --- a/1-js/05-data-types/11-date/article.md +++ b/1-js/05-data-types/11-date/article.md @@ -57,7 +57,7 @@ To create a new `Date` object call `new Date()` with one of the following argume `new Date(year, month, date, hours, minutes, seconds, ms)` : Create the date with the given components in the local time zone. Only the first two arguments are obligatory. - - The `year` must have 4 digits: `2013` is okay, `98` is not. + - The `year` should have 4 digits. For compatibility, 2 digits are also accepted and considered `19xx`, e.g. `98` is the same as `1998` here, but always using 4 digits is strongly encouraged. - The `month` count starts with `0` (Jan), up to `11` (Dec). - The `date` parameter is actually the day of month, if absent then `1` is assumed. - If `hours/minutes/seconds/ms` is absent, they are assumed to be equal `0`. @@ -376,7 +376,7 @@ for (let i = 0; i < 10; i++) { ```warn header="Be careful doing microbenchmarking" Modern JavaScript engines perform many optimizations. They may tweak results of "artificial tests" compared to "normal usage", especially when we benchmark something very small, such as how an operator works, or a built-in function. So if you seriously want to understand performance, then please study how the JavaScript engine works. And then you probably won't need microbenchmarks at all. -The great pack of articles about V8 can be found at . +The great pack of articles about V8 can be found at . ``` ## Date.parse from a string @@ -407,7 +407,7 @@ We can instantly create a `new Date` object from the timestamp: ```js run let date = new Date( Date.parse('2012-01-26T13:51:50.417-07:00') ); -alert(date); +alert(date); ``` ## Summary diff --git a/1-js/05-data-types/12-json/article.md b/1-js/05-data-types/12-json/article.md index ae5f045af..133ffb353 100644 --- a/1-js/05-data-types/12-json/article.md +++ b/1-js/05-data-types/12-json/article.md @@ -27,7 +27,7 @@ Luckily, there's no need to write the code to handle all this. The task has been ## JSON.stringify -The [JSON](http://en.wikipedia.org/wiki/JSON) (JavaScript Object Notation) is a general format to represent values and objects. It is described as in [RFC 4627](https://tools.ietf.org/html/rfc4627) standard. Initially it was made for JavaScript, but many other languages have libraries to handle it as well. So it's easy to use JSON for data exchange when the client uses JavaScript and the server is written on Ruby/PHP/Java/Whatever. +The [JSON](https://en.wikipedia.org/wiki/JSON) (JavaScript Object Notation) is a general format to represent values and objects. It is described as in [RFC 4627](https://tools.ietf.org/html/rfc4627) standard. Initially it was made for JavaScript, but many other languages have libraries to handle it as well. So it's easy to use JSON for data exchange when the client uses JavaScript and the server is written on Ruby/PHP/Java/Whatever. JavaScript provides methods: @@ -41,7 +41,7 @@ let student = { age: 30, isAdmin: false, courses: ['html', 'css', 'js'], - wife: null + spouse: null }; *!* @@ -58,7 +58,7 @@ alert(json); "age": 30, "isAdmin": false, "courses": ["html", "css", "js"], - "wife": null + "spouse": null } */ */!* @@ -405,7 +405,7 @@ To decode a JSON-string, we need another method named [JSON.parse](mdn:js/JSON/p The syntax: ```js -let value = JSON.parse(str, [reviver]); +let value = JSON.parse(str[, reviver]); ``` str @@ -451,7 +451,7 @@ let json = `{ Besides, JSON does not support comments. Adding a comment to JSON makes it invalid. -There's another format named [JSON5](http://json5.org/), which allows unquoted keys, comments etc. But this is a standalone library, not in the specification of the language. +There's another format named [JSON5](https://json5.org/), which allows unquoted keys, comments etc. But this is a standalone library, not in the specification of the language. The regular JSON is that strict not because its developers are lazy, but to allow easy, reliable and very fast implementations of the parsing algorithm. diff --git a/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md b/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md index 3a281ef3f..11667f940 100644 --- a/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md +++ b/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md @@ -37,4 +37,4 @@ P.S. Naturally, the formula is the fastest solution. It uses only 3 operations f The loop variant is the second in terms of speed. In both the recursive and the loop variant we sum the same numbers. But the recursion involves nested calls and execution stack management. That also takes resources, so it's slower. -P.P.S. Some engines support the "tail call" optimization: if a recursive call is the very last one in the function (like in `sumTo` above), then the outer function will not need to resume the execution, so the engine doesn't need to remember its execution context. That removes the burden on memory, so counting `sumTo(100000)` becomes possible. But if the JavaScript engine does not support tail call optimization (most of them don't), there will be an error: maximum stack size exceeded, because there's usually a limitation on the total stack size. +P.P.S. Some engines support the "tail call" optimization: if a recursive call is the very last one in the function, with no other calculations performed, then the outer function will not need to resume the execution, so the engine doesn't need to remember its execution context. That removes the burden on memory. But if the JavaScript engine does not support tail call optimization (most of them don't), there will be an error: maximum stack size exceeded, because there's usually a limitation on the total stack size. diff --git a/1-js/06-advanced-functions/01-recursion/article.md b/1-js/06-advanced-functions/01-recursion/article.md index b7992f162..5ae894474 100644 --- a/1-js/06-advanced-functions/01-recursion/article.md +++ b/1-js/06-advanced-functions/01-recursion/article.md @@ -61,7 +61,7 @@ When `pow(x, n)` is called, the execution splits into two branches: if n==1 = x / pow(x, n) = - \ + \ else = x * pow(x, n - 1) ``` @@ -285,7 +285,7 @@ The iterative `pow` uses a single context changing `i` and `result` in the proce **Any recursion can be rewritten as a loop. The loop variant usually can be made more effective.** -...But sometimes the rewrite is non-trivial, especially when function uses different recursive subcalls depending on conditions and merges their results or when the branching is more intricate. And the optimization may be unneeded and totally not worth the efforts. +...But sometimes the rewrite is non-trivial, especially when a function uses different recursive subcalls depending on conditions and merges their results or when the branching is more intricate. And the optimization may be unneeded and totally not worth the efforts. Recursion can give a shorter code, easier to understand and support. Optimizations are not required in every place, mostly we need a good code, that's why it's used. diff --git a/1-js/06-advanced-functions/02-rest-parameters-spread/article.md b/1-js/06-advanced-functions/02-rest-parameters-spread/article.md index c63fe70cd..dbdfbd6c0 100644 --- a/1-js/06-advanced-functions/02-rest-parameters-spread/article.md +++ b/1-js/06-advanced-functions/02-rest-parameters-spread/article.md @@ -23,7 +23,7 @@ function sum(a, b) { alert( sum(1, 2, 3, 4, 5) ); ``` -There will be no error because of "excessive" arguments. But of course in the result only the first two will be counted. +There will be no error because of "excessive" arguments. But of course in the result only the first two will be counted, so the result in the code above is `3`. The rest of the parameters can be included in the function definition by using three dots `...` followed by the name of the array that will contain them. The dots literally mean "gather the remaining parameters into an array". diff --git a/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md b/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md index d02c53b99..4e386eec5 100644 --- a/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md +++ b/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md @@ -1,4 +1,6 @@ +importance: 5 +--- # Function in if Look at the code. What will be the result of the call at the last line? diff --git a/1-js/06-advanced-functions/03-closure/article.md b/1-js/06-advanced-functions/03-closure/article.md index 199887063..cb43a7968 100644 --- a/1-js/06-advanced-functions/03-closure/article.md +++ b/1-js/06-advanced-functions/03-closure/article.md @@ -7,7 +7,7 @@ We already know that a function can access variables outside of it ("outer" vari But what happens if outer variables change since a function is created? Will the function get newer values or the old ones? -And what if a function is passed along as a parameter and called from another place of code, will it get access to outer variables at the new place? +And what if a function is passed along as an argument and called from another place of code, will it get access to outer variables at the new place? Let's expand our knowledge to understand these scenarios and more complex ones. diff --git a/1-js/06-advanced-functions/04-var/article.md b/1-js/06-advanced-functions/04-var/article.md index 1579afb62..28d7a76ec 100644 --- a/1-js/06-advanced-functions/04-var/article.md +++ b/1-js/06-advanced-functions/04-var/article.md @@ -58,7 +58,7 @@ alert(test); // ReferenceError: test is not defined The same thing for loops: `var` cannot be block- or loop-local: -```js +```js run for (var i = 0; i < 10; i++) { var one = 1; // ... @@ -170,7 +170,7 @@ That's best demonstrated with an example: ```js run function sayHi() { - alert(phrase); + alert(phrase); *!* var phrase = "Hello"; diff --git a/1-js/06-advanced-functions/05-global-object/article.md b/1-js/06-advanced-functions/05-global-object/article.md index 40131e339..cf4839d94 100644 --- a/1-js/06-advanced-functions/05-global-object/article.md +++ b/1-js/06-advanced-functions/05-global-object/article.md @@ -25,7 +25,7 @@ var gVar = 5; alert(window.gVar); // 5 (became a property of the global object) ``` -The same effect have function declarations (statements with `function` keyword in the main code flow, not function expressions). +Function declarations have the same effect (statements with `function` keyword in the main code flow, not function expressions). Please don't rely on that! This behavior exists for compatibility reasons. Modern scripts use [JavaScript modules](info:modules) where such a thing doesn't happen. diff --git a/1-js/06-advanced-functions/06-function-object/article.md b/1-js/06-advanced-functions/06-function-object/article.md index 12342f45a..c84f4e52f 100644 --- a/1-js/06-advanced-functions/06-function-object/article.md +++ b/1-js/06-advanced-functions/06-function-object/article.md @@ -326,7 +326,7 @@ welcome(); // Hello, Guest (nested call works) Now it works, because the name `"func"` is function-local. It is not taken from outside (and not visible there). The specification guarantees that it will always reference the current function. -The outer code still has its variable `sayHi` or `welcome`. And `func` is an "internal function name", how the function can call itself internally. +The outer code still has its variable `sayHi` or `welcome`. And `func` is an "internal function name", the way for the function to can call itself reliably. ```smart header="There's no such thing for Function Declaration" The "internal name" feature described here is only available for Function Expressions, not for Function Declarations. For Function Declarations, there is no syntax for adding an "internal" name. diff --git a/1-js/06-advanced-functions/08-settimeout-setinterval/article.md b/1-js/06-advanced-functions/08-settimeout-setinterval/article.md index 984102687..f96959988 100644 --- a/1-js/06-advanced-functions/08-settimeout-setinterval/article.md +++ b/1-js/06-advanced-functions/08-settimeout-setinterval/article.md @@ -27,7 +27,7 @@ Usually, that's a function. For historical reasons, a string of code can be pass : The delay before run, in milliseconds (1000 ms = 1 second), by default 0. `arg1`, `arg2`... -: Arguments for the function (not supported in IE9-) +: Arguments for the function For instance, this code calls `sayHi()` after one second: @@ -102,7 +102,7 @@ As we can see from `alert` output, in a browser the timer identifier is a number Again, there is no universal specification for these methods, so that's fine. -For browsers, timers are described in the [timers section](https://www.w3.org/TR/html5/webappapis.html#timers) of HTML5 standard. +For browsers, timers are described in the [timers section](https://html.spec.whatwg.org/multipage/timers-and-user-prompts.html#timers) of HTML Living Standard. ## setInterval @@ -232,7 +232,7 @@ setTimeout(function() {...}, 100); For `setInterval` the function stays in memory until `clearInterval` is called. -There's a side-effect. A function references the outer lexical environment, so, while it lives, outer variables live too. They may take much more memory than the function itself. So when we don't need the scheduled function anymore, it's better to cancel it, even if it's very small. +There's a side effect. A function references the outer lexical environment, so, while it lives, outer variables live too. They may take much more memory than the function itself. So when we don't need the scheduled function anymore, it's better to cancel it, even if it's very small. ```` ## Zero delay setTimeout @@ -256,7 +256,7 @@ The first line "puts the call into calendar after 0ms". But the scheduler will o There are also advanced browser-related use cases of zero-delay timeout, that we'll discuss in the chapter . ````smart header="Zero delay is in fact not zero (in a browser)" -In the browser, there's a limitation of how often nested timers can run. The [HTML5 standard](https://html.spec.whatwg.org/multipage/timers-and-user-prompts.html#timers) says: "after five nested timers, the interval is forced to be at least 4 milliseconds.". +In the browser, there's a limitation of how often nested timers can run. The [HTML Living Standard](https://html.spec.whatwg.org/multipage/timers-and-user-prompts.html#timers) says: "after five nested timers, the interval is forced to be at least 4 milliseconds.". Let's demonstrate what it means with the example below. The `setTimeout` call in it re-schedules itself with zero delay. Each call remembers the real time from the previous one in the `times` array. What do the real delays look like? Let's see: @@ -297,6 +297,6 @@ Please note that all scheduling methods do not *guarantee* the exact delay. For example, the in-browser timer may slow down for a lot of reasons: - The CPU is overloaded. - The browser tab is in the background mode. -- The laptop is on battery. +- The laptop is on battery saving mode. All that may increase the minimal timer resolution (the minimal delay) to 300ms or even 1000ms depending on the browser and OS-level performance settings. diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md index 6df7af132..cbd473196 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md @@ -8,7 +8,7 @@ Create a "throttling" decorator `throttle(f, ms)` -- that returns a wrapper. When it's called multiple times, it passes the call to `f` at maximum once per `ms` milliseconds. -The difference with debounce is that it's completely different decorator: +Compared to the debounce decorator, the behavior is completely different: - `debounce` runs the function once after the "cooldown" period. Good for processing the final result. - `throttle` runs it not more often than given `ms` time. Good for regular updates that shouldn't be very often. diff --git a/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md b/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md index 403107ca6..4a381c0b4 100644 --- a/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md +++ b/1-js/06-advanced-functions/10-bind/5-question-use-bind/solution.md @@ -1,5 +1,5 @@ -The error occurs because `ask` gets functions `loginOk/loginFail` without the object. +The error occurs because `askPassword` gets functions `loginOk/loginFail` without the object. When it calls them, they naturally assume `this=undefined`. diff --git a/1-js/06-advanced-functions/10-bind/article.md b/1-js/06-advanced-functions/10-bind/article.md index 9d705cdcd..6d65e7dd1 100644 --- a/1-js/06-advanced-functions/10-bind/article.md +++ b/1-js/06-advanced-functions/10-bind/article.md @@ -202,7 +202,7 @@ for (let key in user) { } ``` -JavaScript libraries also provide functions for convenient mass binding , e.g. [_.bindAll(object, methodNames)](http://lodash.com/docs#bindAll) in lodash. +JavaScript libraries also provide functions for convenient mass binding , e.g. [_.bindAll(object, methodNames)](https://lodash.com/docs#bindAll) in lodash. ```` ## Partial functions diff --git a/1-js/07-object-properties/01-property-descriptors/article.md b/1-js/07-object-properties/01-property-descriptors/article.md index bdc693418..0a945b377 100644 --- a/1-js/07-object-properties/01-property-descriptors/article.md +++ b/1-js/07-object-properties/01-property-descriptors/article.md @@ -123,7 +123,7 @@ user.name = "Pete"; // Error: Cannot assign to read only property 'name' Now no one can change the name of our user, unless they apply their own `defineProperty` to override ours. ```smart header="Errors appear only in strict mode" -In the non-strict mode, no errors occur when writing to non-writable properties and such. But the operation still won't succeed. Flag-violating actions are just silently ignored in non-strict. +In non-strict mode, no errors occur when writing to non-writable properties and such. But the operation still won't succeed. Flag-violating actions are just silently ignored in non-strict. ``` Here's the same example, but the property is created from scratch: diff --git a/1-js/08-prototypes/01-prototype-inheritance/article.md b/1-js/08-prototypes/01-prototype-inheritance/article.md index 8cb301c80..ef6c7ffeb 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/article.md +++ b/1-js/08-prototypes/01-prototype-inheritance/article.md @@ -131,7 +131,6 @@ There are only two limitations: Also it may be obvious, but still: there can be only one `[[Prototype]]`. An object may not inherit from two others. - ```smart header="`__proto__` is a historical getter/setter for `[[Prototype]]`" It's a common mistake of novice developers not to know the difference between these two. diff --git a/1-js/08-prototypes/03-native-prototypes/article.md b/1-js/08-prototypes/03-native-prototypes/article.md index 6cf7aebb4..bdfc86dd8 100644 --- a/1-js/08-prototypes/03-native-prototypes/article.md +++ b/1-js/08-prototypes/03-native-prototypes/article.md @@ -2,7 +2,7 @@ The `"prototype"` property is widely used by the core of JavaScript itself. All built-in constructor functions use it. -First we'll see at the details, and then how to use it for adding new capabilities to built-in objects. +First we'll look at the details, and then how to use it for adding new capabilities to built-in objects. ## Object.prototype diff --git a/1-js/08-prototypes/03-native-prototypes/proto-constructor-animal-rabbit.svg b/1-js/08-prototypes/03-native-prototypes/proto-constructor-animal-rabbit.svg deleted file mode 100644 index ede4e1227..000000000 --- a/1-js/08-prototypes/03-native-prototypes/proto-constructor-animal-rabbit.svg +++ /dev/null @@ -1 +0,0 @@ -eats: truename: "White Rabbit"animalRabbitrabbit[[Prototype]]prototype \ No newline at end of file diff --git a/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md b/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md index a92e17900..f3c9cf0e5 100644 --- a/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md +++ b/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md @@ -28,4 +28,4 @@ alert(dictionary); // "apple,__proto__" When we create a property using a descriptor, its flags are `false` by default. So in the code above, `dictionary.toString` is non-enumerable. -See the the chapter [](info:property-descriptors) for review. +See the chapter [](info:property-descriptors) for review. diff --git a/1-js/08-prototypes/04-prototype-methods/article.md b/1-js/08-prototypes/04-prototype-methods/article.md index a4ce2646c..9c5f1eb3d 100644 --- a/1-js/08-prototypes/04-prototype-methods/article.md +++ b/1-js/08-prototypes/04-prototype-methods/article.md @@ -3,15 +3,18 @@ In the first chapter of this section, we mentioned that there are modern methods to setup a prototype. -The `__proto__` is considered outdated and somewhat deprecated (in browser-only part of the JavaScript standard). +Setting or reading the prototype with `obj.__proto__` is considered outdated and somewhat deprecated (moved to the so-called "Annex B" of the JavaScript standard, meant for browsers only). -The modern methods are: +The modern methods to get/set a prototype are: -- [Object.create(proto, [descriptors])](mdn:js/Object/create) -- creates an empty object with given `proto` as `[[Prototype]]` and optional property descriptors. - [Object.getPrototypeOf(obj)](mdn:js/Object/getPrototypeOf) -- returns the `[[Prototype]]` of `obj`. - [Object.setPrototypeOf(obj, proto)](mdn:js/Object/setPrototypeOf) -- sets the `[[Prototype]]` of `obj` to `proto`. -These should be used instead of `__proto__`. +The only usage of `__proto__`, that's not frowned upon, is as a property when creating a new object: `{ __proto__: ... }`. + +Although, there's a special method for this too: + +- [Object.create(proto[, descriptors])](mdn:js/Object/create) -- creates an empty object with given `proto` as `[[Prototype]]` and optional property descriptors. For instance: @@ -22,7 +25,7 @@ let animal = { // create a new object with animal as a prototype *!* -let rabbit = Object.create(animal); +let rabbit = Object.create(animal); // same as {__proto__: animal} */!* alert(rabbit.eats); // true @@ -36,7 +39,9 @@ Object.setPrototypeOf(rabbit, {}); // change the prototype of rabbit to {} */!* ``` -`Object.create` has an optional second argument: property descriptors. We can provide additional properties to the new object there, like this: +The `Object.create` method is a bit more powerful, as it has an optional second argument: property descriptors. + +We can provide additional properties to the new object there, like this: ```js run let animal = { @@ -57,26 +62,34 @@ The descriptors are in the same format as described in the chapter , arrow functions do not have `super`. If accessed, it's taken from the outer function. For instance: + ```js class Rabbit extends Animal { stop() { @@ -176,7 +177,6 @@ setTimeout(function() { super.stop() }, 1000); ``` ```` - ## Overriding constructor With constructors it gets a little bit tricky. @@ -280,8 +280,6 @@ alert(rabbit.earLength); // 10 */!* ``` - - ### Overriding class fields: a tricky note ```warn header="Advanced note" @@ -370,13 +368,12 @@ In our case, `Rabbit` is the derived class. There's no `constructor()` in it. As So, `new Rabbit()` calls `super()`, thus executing the parent constructor, and (per the rule for derived classes) only after that its class fields are initialized. At the time of the parent constructor execution, there are no `Rabbit` class fields yet, that's why `Animal` fields are used. -This subtle difference between fields and methods is specific to JavaScript +This subtle difference between fields and methods is specific to JavaScript. Luckily, this behavior only reveals itself if an overridden field is used in the parent constructor. Then it may be difficult to understand what's going on, so we're explaining it here. If it becomes a problem, one can fix it by using methods or getters/setters instead of fields. - ## Super: internals, [[HomeObject]] ```warn header="Advanced information" diff --git a/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md index ca9e80601..cb9829ce0 100644 --- a/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md +++ b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md @@ -21,14 +21,14 @@ alert( rabbit.hasOwnProperty('name') ); // true But that's not all yet. -Even after the fix, there's still important difference in `"class Rabbit extends Object"` versus `class Rabbit`. +Even after the fix, there's still an important difference between `"class Rabbit extends Object"` and `class Rabbit`. As we know, the "extends" syntax sets up two prototypes: 1. Between `"prototype"` of the constructor functions (for methods). 2. Between the constructor functions themselves (for static methods). -In our case, for `class Rabbit extends Object` it means: +In the case of `class Rabbit extends Object` it means: ```js run class Rabbit extends Object {} @@ -37,7 +37,7 @@ alert( Rabbit.prototype.__proto__ === Object.prototype ); // (1) true alert( Rabbit.__proto__ === Object ); // (2) true ``` -So `Rabbit` now provides access to static methods of `Object` via `Rabbit`, like this: +So `Rabbit` now provides access to the static methods of `Object` via `Rabbit`, like this: ```js run class Rabbit extends Object {} @@ -67,7 +67,7 @@ alert ( Rabbit.getOwnPropertyNames({a: 1, b: 2})); // Error So `Rabbit` doesn't provide access to static methods of `Object` in that case. -By the way, `Function.prototype` has "generic" function methods, like `call`, `bind` etc. They are ultimately available in both cases, because for the built-in `Object` constructor, `Object.__proto__ === Function.prototype`. +By the way, `Function.prototype` also has "generic" function methods, like `call`, `bind` etc. They are ultimately available in both cases, because for the built-in `Object` constructor, `Object.__proto__ === Function.prototype`. Here's the picture: diff --git a/1-js/09-classes/03-static-properties-methods/article.md b/1-js/09-classes/03-static-properties-methods/article.md index 60b9824dc..4b493a5e8 100644 --- a/1-js/09-classes/03-static-properties-methods/article.md +++ b/1-js/09-classes/03-static-properties-methods/article.md @@ -109,6 +109,17 @@ Static methods are also used in database-related classes to search/save/remove e Article.remove({id: 12345}); ``` +````warn header="Static methods aren't available for individual objects" +Static methods are callable on classes, not on individual objects. + +E.g. such code won't work: + +```js +// ... +article.createTodays(); /// Error: article.createTodays is not a function +``` +```` + ## Static properties [recent browser=Chrome] diff --git a/1-js/09-classes/07-mixins/article.md b/1-js/09-classes/07-mixins/article.md index 06001d900..526b832ef 100644 --- a/1-js/09-classes/07-mixins/article.md +++ b/1-js/09-classes/07-mixins/article.md @@ -103,7 +103,7 @@ Here's the diagram (see the right part): That's because methods `sayHi` and `sayBye` were initially created in `sayHiMixin`. So even though they got copied, their `[[HomeObject]]` internal property references `sayHiMixin`, as shown in the picture above. -As `super` looks for parent methods in `[[HomeObject]].[[Prototype]]`, that means it searches `sayHiMixin.[[Prototype]]`, not `User.[[Prototype]]`. +As `super` looks for parent methods in `[[HomeObject]].[[Prototype]]`, that means it searches `sayHiMixin.[[Prototype]]`. ## EventMixin diff --git a/1-js/10-error-handling/1-try-catch/article.md b/1-js/10-error-handling/1-try-catch/article.md index a928da289..bf548373a 100644 --- a/1-js/10-error-handling/1-try-catch/article.md +++ b/1-js/10-error-handling/1-try-catch/article.md @@ -632,7 +632,7 @@ For instance: The role of the global handler `window.onerror` is usually not to recover the script execution -- that's probably impossible in case of programming errors, but to send the error message to developers. -There are also web-services that provide error-logging for such cases, like or . +There are also web-services that provide error-logging for such cases, like or . They work like this: diff --git a/1-js/10-error-handling/2-custom-errors/article.md b/1-js/10-error-handling/2-custom-errors/article.md index 918289319..d28b07439 100644 --- a/1-js/10-error-handling/2-custom-errors/article.md +++ b/1-js/10-error-handling/2-custom-errors/article.md @@ -38,7 +38,7 @@ class Error { Now let's inherit `ValidationError` from it and try it in action: -```js run untrusted +```js run *!* class ValidationError extends Error { */!* diff --git a/1-js/11-async/01-callbacks/article.md b/1-js/11-async/01-callbacks/article.md index 5950df051..57115a909 100644 --- a/1-js/11-async/01-callbacks/article.md +++ b/1-js/11-async/01-callbacks/article.md @@ -77,6 +77,8 @@ function loadScript(src, *!*callback*/!*) { } ``` +The `onload` event is described in the article , it basically executes a function after the script is loaded and executed. + Now if we want to call new functions from the script, we should write that in the callback: ```js @@ -102,7 +104,7 @@ function loadScript(src, callback) { *!* loadScript('https://cdnjs.cloudflare.com/ajax/libs/lodash.js/3.2.0/lodash.js', script => { alert(`Cool, the script ${script.src} is loaded`); - alert( _ ); // function declared in the loaded script + alert( _ ); // _ is a function declared in the loaded script }); */!* ``` diff --git a/1-js/11-async/02-promise-basics/article.md b/1-js/11-async/02-promise-basics/article.md index f2f533220..66d9538fc 100644 --- a/1-js/11-async/02-promise-basics/article.md +++ b/1-js/11-async/02-promise-basics/article.md @@ -36,7 +36,7 @@ So to summarize: the executor runs automatically and attempts to perform a job. The `promise` object returned by the `new Promise` constructor has these internal properties: - `state` — initially `"pending"`, then changes to either `"fulfilled"` when `resolve` is called or `"rejected"` when `reject` is called. -- `result` — initially `undefined`, then changes to `value` when `resolve(value)` called or `error` when `reject(error)` is called. +- `result` — initially `undefined`, then changes to `value` when `resolve(value)` is called or `error` when `reject(error)` is called. So the executor eventually moves `promise` to one of these states: @@ -46,7 +46,7 @@ Later we'll see how "fans" can subscribe to these changes. Here's an example of a promise constructor and a simple executor function with "producing code" that takes time (via `setTimeout`): -```js run +```js let promise = new Promise(function(resolve, reject) { // the function is executed automatically when the promise is constructed @@ -60,7 +60,7 @@ We can see two things by running the code above: 1. The executor is called automatically and immediately (by `new Promise`). 2. The executor receives two arguments: `resolve` and `reject`. These functions are pre-defined by the JavaScript engine, so we don't need to create them. We should only call one of them when ready. - After one second of "processing" the executor calls `resolve("done")` to produce the result. This changes the state of the `promise` object: + After one second of "processing", the executor calls `resolve("done")` to produce the result. This changes the state of the `promise` object: ![](promise-resolve-1.svg) @@ -127,9 +127,9 @@ That's fine. We immediately have a resolved promise. The properties `state` and `result` of the Promise object are internal. We can't directly access them. We can use the methods `.then`/`.catch`/`.finally` for that. They are described below. ``` -## Consumers: then, catch, finally +## Consumers: then, catch -A Promise object serves as a link between the executor (the "producing code" or "singer") and the consuming functions (the "fans"), which will receive the result or error. Consuming functions can be registered (subscribed) using methods `.then`, `.catch` and `.finally`. +A Promise object serves as a link between the executor (the "producing code" or "singer") and the consuming functions (the "fans"), which will receive the result or error. Consuming functions can be registered (subscribed) using the methods `.then` and `.catch`. ### then @@ -144,9 +144,9 @@ promise.then( ); ``` -The first argument of `.then` is a function that runs when the promise is resolved, and receives the result. +The first argument of `.then` is a function that runs when the promise is resolved and receives the result. -The second argument of `.then` is a function that runs when the promise is rejected, and receives the error. +The second argument of `.then` is a function that runs when the promise is rejected and receives the error. For instance, here's a reaction to a successfully resolved promise: @@ -212,59 +212,83 @@ promise.catch(alert); // shows "Error: Whoops!" after 1 second The call `.catch(f)` is a complete analog of `.then(null, f)`, it's just a shorthand. -### finally +## Cleanup: finally Just like there's a `finally` clause in a regular `try {...} catch {...}`, there's `finally` in promises. -The call `.finally(f)` is similar to `.then(f, f)` in the sense that `f` always runs when the promise is settled: be it resolve or reject. +The call `.finally(f)` is similar to `.then(f, f)` in the sense that `f` runs always, when the promise is settled: be it resolve or reject. + +The idea of `finally` is to set up a handler for performing cleanup/finalizing after the previous operations are complete. -`finally` is a good handler for performing cleanup, e.g. stopping our loading indicators, as they are not needed anymore, no matter what the outcome is. +E.g. stopping loading indicators, closing no longer needed connections, etc. -Like this: +Think of it as a party finisher. Irresepective of whether a party was good or bad, how many friends were in it, we still need (or at least should) do a cleanup after it. + +The code may look like this: ```js new Promise((resolve, reject) => { - /* do something that takes time, and then call resolve/reject */ + /* do something that takes time, and then call resolve or maybe reject */ }) *!* // runs when the promise is settled, doesn't matter successfully or not .finally(() => stop loading indicator) - // so the loading indicator is always stopped before we process the result/error + // so the loading indicator is always stopped before we go on */!* .then(result => show result, err => show error) ``` -That said, `finally(f)` isn't exactly an alias of `then(f,f)` though. There are few subtle differences: +Please note that `finally(f)` isn't exactly an alias of `then(f,f)` though. + +There are important differences: 1. A `finally` handler has no arguments. In `finally` we don't know whether the promise is successful or not. That's all right, as our task is usually to perform "general" finalizing procedures. -2. A `finally` handler passes through results and errors to the next handler. + + Please take a look at the example above: as you can see, the `finally` handler has no arguments, and the promise outcome is handled by the next handler. +2. A `finally` handler "passes through" the result or error to the next suitable handler. For instance, here the result is passed through `finally` to `then`: + ```js run new Promise((resolve, reject) => { - setTimeout(() => resolve("result"), 2000) + setTimeout(() => resolve("value"), 2000); }) - .finally(() => alert("Promise ready")) - .then(result => alert(result)); // <-- .then handles the result + .finally(() => alert("Promise ready")) // triggers first + .then(result => alert(result)); // <-- .then shows "value" ``` - And here there's an error in the promise, passed through `finally` to `catch`: + As you can see, the `value` returned by the first promise is passed through `finally` to the next `then`. + + That's very convenient, because `finally` is not meant to process a promise result. As said, it's a place to do generic cleanup, no matter what the outcome was. + + And here's an example of an error, for us to see how it's passed through `finally` to `catch`: ```js run new Promise((resolve, reject) => { throw new Error("error"); }) - .finally(() => alert("Promise ready")) - .catch(err => alert(err)); // <-- .catch handles the error object + .finally(() => alert("Promise ready")) // triggers first + .catch(err => alert(err)); // <-- .catch shows the error ``` -That's very convenient, because `finally` is not meant to process a promise result. So it passes it through. +3. A `finally` handler also shouldn't return anything. If it does, the returned value is silently ignored. -We'll talk more about promise chaining and result-passing between handlers in the next chapter. + The only exception to this rule is when a `finally` handler throws an error. Then this error goes to the next handler, instead of any previous outcome. +To summarize: + +- A `finally` handler doesn't get the outcome of the previous handler (it has no arguments). This outcome is passed through instead, to the next suitable handler. +- If a `finally` handler returns something, it's ignored. +- When `finally` throws an error, then the execution goes to the nearest error handler. + +These features are helpful and make things work just the right way if we use `finally` how it's supposed to be used: for generic cleanup procedures. ````smart header="We can attach handlers to settled promises" -If a promise is pending, `.then/catch/finally` handlers wait for it. Otherwise, if a promise has already settled, they just run: +If a promise is pending, `.then/catch/finally` handlers wait for its outcome. + +Sometimes, it might be that a promise is already settled when we add a handler to it. + +In such case, these handlers just run immediately: ```js run // the promise becomes resolved immediately upon creation @@ -278,10 +302,10 @@ Note that this makes promises more powerful than the real life "subscription lis Promises are more flexible. We can add handlers any time: if the result is already there, they just execute. ```` -Next, let's see more practical examples of how promises can help us write asynchronous code. - ## Example: loadScript [#loadscript] +Next, let's see more practical examples of how promises can help us write asynchronous code. + We've got the `loadScript` function for loading a script from the previous chapter. Here's the callback-based variant, just to remind us of it: diff --git a/1-js/11-async/03-promise-chaining/article.md b/1-js/11-async/03-promise-chaining/article.md index ebf869156..a33ca258c 100644 --- a/1-js/11-async/03-promise-chaining/article.md +++ b/1-js/11-async/03-promise-chaining/article.md @@ -72,7 +72,7 @@ promise.then(function(result) { }); ``` -What we did here is just several handlers to one promise. They don't pass the result to each other; instead they process it independently. +What we did here is just adding several handlers to one promise. They don't pass the result to each other; instead they process it independently. Here's the picture (compare it with the chaining above): @@ -224,7 +224,7 @@ This feature allows us to integrate custom objects with promise chains without h ## Bigger example: fetch -In frontend programming promises are often used for network requests. So let's see an extended example of that. +In frontend programming, promises are often used for network requests. So let's see an extended example of that. We'll use the [fetch](info:fetch) method to load the information about the user from the remote server. It has a lot of optional parameters covered in [separate chapters](info:fetch), but the basic syntax is quite simple: diff --git a/1-js/11-async/04-promise-error-handling/article.md b/1-js/11-async/04-promise-error-handling/article.md index 9f7159af9..c5b4206ab 100644 --- a/1-js/11-async/04-promise-error-handling/article.md +++ b/1-js/11-async/04-promise-error-handling/article.md @@ -199,6 +199,7 @@ In non-browser environments like Node.js there are other ways to track unhandled ## Summary - `.catch` handles errors in promises of all kinds: be it a `reject()` call, or an error thrown in a handler. +- `.then` also catches errors in the same manner, if given the second argument (which is the error handler). - We should place `.catch` exactly in places where we want to handle errors and know how to handle them. The handler should analyze errors (custom error classes help) and rethrow unknown ones (maybe they are programming mistakes). - It's ok not to use `.catch` at all, if there's no way to recover from an error. - In any case we should have the `unhandledrejection` event handler (for browsers, and analogs for other environments) to track unhandled errors and inform the user (and probably our server) about them, so that our app never "just dies". diff --git a/1-js/11-async/06-promisify/article.md b/1-js/11-async/06-promisify/article.md index 1d81b31a6..855678e5b 100644 --- a/1-js/11-async/06-promisify/article.md +++ b/1-js/11-async/06-promisify/article.md @@ -25,7 +25,7 @@ function loadScript(src, callback) { The function loads a script with the given `src`, and then calls `callback(err)` in case of an error, or `callback(null, script)` in case of successful loading. That's a widespread agreement for using callbacks, we saw it before. -Let's promisify it. +Let's promisify it. We'll make a new function `loadScriptPromise(src)`, that does the same (loads the script), but returns a promise instead of using callbacks. @@ -124,7 +124,7 @@ For more exotic callback formats, like those without `err` at all: `callback(res There are also modules with a bit more flexible promisification functions, e.g. [es6-promisify](https://github.com/digitaldesignlabs/es6-promisify). In Node.js, there's a built-in `util.promisify` function for that. ```smart -Promisification is a great approach, especially when you use `async/await` (see the next chapter), but not a total replacement for callbacks. +Promisification is a great approach, especially when you use `async/await` (covered later in the chapter ), but not a total replacement for callbacks. Remember, a promise may have only one result, but a callback may technically be called many times. diff --git a/1-js/11-async/08-async-await/04-promise-all-failure/solution.md b/1-js/11-async/08-async-await/04-promise-all-failure/solution.md new file mode 100644 index 000000000..9fda8e000 --- /dev/null +++ b/1-js/11-async/08-async-await/04-promise-all-failure/solution.md @@ -0,0 +1,113 @@ + +The root of the problem is that `Promise.all` immediately rejects when one of its promises rejects, but it do nothing to cancel the other promises. + +In our case, the second query fails, so `Promise.all` rejects, and the `try...catch` block catches this error.Meanwhile, other promises are *not affected* - they independently continue their execution. In our case, the third query throws an error of its own after a bit of time. And that error is never caught, we can see it in the console. + +The problem is especially dangerous in server-side environments, such as Node.js, when an uncaught error may cause the process to crash. + +How to fix it? + +An ideal solution would be to cancel all unfinished queries when one of them fails. This way we avoid any potential errors. + +However, the bad news is that service calls (such as `database.query`) are often implemented by a 3rd-party library which doesn't support cancellation. Then there's no way to cancel a call. + +As an alternative, we can write our own wrapper function around `Promise.all` which adds a custom `then/catch` handler to each promise to track them: results are gathered and, if an error occurs, all subsequent promises are ignored. + +```js +function customPromiseAll(promises) { + return new Promise((resolve, reject) => { + const results = []; + let resultsCount = 0; + let hasError = false; // we'll set it to true upon first error + + promises.forEach((promise, index) => { + promise + .then(result => { + if (hasError) return; // ignore the promise if already errored + results[index] = result; + resultsCount++; + if (resultsCount === promises.length) { + resolve(results); // when all results are ready - successs + } + }) + .catch(error => { + if (hasError) return; // ignore the promise if already errored + hasError = true; // wops, error! + reject(error); // fail with rejection + }); + }); + }); +} +``` + +This approach has an issue of its own - it's often undesirable to `disconnect()` when queries are still in the process. + +It may be important that all queries complete, especially if some of them make important updates. + +So we should wait until all promises are settled before going further with the execution and eventually disconnecting. + +Here's another implementation. It behaves similar to `Promise.all` - also resolves with the first error, but waits until all promises are settled. + +```js +function customPromiseAllWait(promises) { + return new Promise((resolve, reject) => { + const results = new Array(promises.length); + let settledCount = 0; + let firstError = null; + + promises.forEach((promise, index) => { + Promise.resolve(promise) + .then(result => { + results[index] = result; + }) + .catch(error => { + if (firstError === null) { + firstError = error; + } + }) + .finally(() => { + settledCount++; + if (settledCount === promises.length) { + if (firstError !== null) { + reject(firstError); + } else { + resolve(results); + } + } + }); + }); + }); +} +``` + +Now `await customPromiseAllWait(...)` will stall the execution until all queries are processed. + +This is a more reliable approach, as it guarantees a predictable execution flow. + +Lastly, if we'd like to process all errors, we can use either use `Promise.allSettled` or write a wrapper around it to gathers all errors in a single [AggregateError](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AggregateError) object and rejects with it. + +```js +// wait for all promises to settle +// return results if no errors +// throw AggregateError with all errors if any +function allOrAggregateError(promises) { + return Promise.allSettled(promises).then(results => { + const errors = []; + const values = []; + + results.forEach((res, i) => { + if (res.status === 'fulfilled') { + values[i] = res.value; + } else { + errors.push(res.reason); + } + }); + + if (errors.length > 0) { + throw new AggregateError(errors, 'One or more promises failed'); + } + + return values; + }); +} +``` diff --git a/1-js/11-async/08-async-await/04-promise-all-failure/task.md b/1-js/11-async/08-async-await/04-promise-all-failure/task.md new file mode 100644 index 000000000..74571c43e --- /dev/null +++ b/1-js/11-async/08-async-await/04-promise-all-failure/task.md @@ -0,0 +1,79 @@ + +# Dangerous Promise.all + +`Promise.all` is a great way to parallelize multiple operations. It's especially useful when we need to make parallel requests to multiple services. + +However, there's a hidden danger. We'll see an example in this task and explore how to avoid it. + +Let's say we have a connection to a remote service, such as a database. + +There're two functions: `connect()` and `disconnect()`. + +When connected, we can send requests using `database.query(...)` - an async function which usually returns the result but also may throw an error. + +Here's a simple implementation: + +```js +let database; + +function connect() { + database = { + async query(isOk) { + if (!isOk) throw new Error('Query failed'); + } + }; +} + +function disconnect() { + database = null; +} + +// intended usage: +// connect() +// ... +// database.query(true) to emulate a successful call +// database.query(false) to emulate a failed call +// ... +// disconnect() +``` + +Now here's the problem. + +We wrote the code to connect and send 3 queries in parallel (all of them take different time, e.g. 100, 200 and 300ms), then disconnect: + +```js +// Helper function to call async function `fn` after `ms` milliseconds +function delay(fn, ms) { + return new Promise((resolve, reject) => { + setTimeout(() => fn().then(resolve, reject), ms); + }); +} + +async function run() { + connect(); + + try { + await Promise.all([ + // these 3 parallel jobs take different time: 100, 200 and 300 ms + // we use the `delay` helper to achieve this effect +*!* + delay(() => database.query(true), 100), + delay(() => database.query(false), 200), + delay(() => database.query(false), 300) +*/!* + ]); + } catch(error) { + console.log('Error handled (or was it?)'); + } + + disconnect(); +} + +run(); +``` + +Two of these queries happen to be unsuccessful, but we're smart enough to wrap the `Promise.all` call into a `try..catch` block. + +However, this doesn't help! This script actually leads to an uncaught error in console! + +Why? How to avoid it? \ No newline at end of file diff --git a/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md b/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md index af2ad0eed..4355d0cfc 100644 --- a/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md +++ b/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md @@ -3,7 +3,7 @@ function* pseudoRandom(seed) { let value = seed; while(true) { - value = value * 16807 % 2147483647 + value = value * 16807 % 2147483647; yield value; } diff --git a/1-js/13-modules/01-modules-intro/article.md b/1-js/13-modules/01-modules-intro/article.md index fede84069..5ad70d151 100644 --- a/1-js/13-modules/01-modules-intro/article.md +++ b/1-js/13-modules/01-modules-intro/article.md @@ -9,11 +9,11 @@ But eventually scripts became more and more complex, so the community invented a To name some (for historical reasons): -- [AMD](https://en.wikipedia.org/wiki/Asynchronous_module_definition) -- one of the most ancient module systems, initially implemented by the library [require.js](http://requirejs.org/). -- [CommonJS](http://wiki.commonjs.org/wiki/Modules/1.1) -- the module system created for Node.js server. +- [AMD](https://en.wikipedia.org/wiki/Asynchronous_module_definition) -- one of the most ancient module systems, initially implemented by the library [require.js](https://requirejs.org/). +- [CommonJS](https://wiki.commonjs.org/wiki/Modules/1.1) -- the module system created for Node.js server. - [UMD](https://github.com/umdjs/umd) -- one more module system, suggested as a universal one, compatible with AMD and CommonJS. -Now all these slowly become a part of history, but we still can find them in old scripts. +Now these all slowly became a part of history, but we still can find them in old scripts. The language-level module system appeared in the standard in 2015, gradually evolved since then, and is now supported by all major browsers and in Node.js. So we'll study the modern JavaScript modules from now on. @@ -272,7 +272,7 @@ In other words: - module scripts wait until the HTML document is fully ready (even if they are tiny and load faster than HTML), and then run. - relative order of scripts is maintained: scripts that go first in the document, execute first. -As a side-effect, module scripts always "see" the fully loaded HTML-page, including HTML elements below them. +As a side effect, module scripts always "see" the fully loaded HTML-page, including HTML elements below them. For instance: diff --git a/1-js/13-modules/02-import-export/article.md b/1-js/13-modules/02-import-export/article.md index 8af1b3b10..1b5649c69 100644 --- a/1-js/13-modules/02-import-export/article.md +++ b/1-js/13-modules/02-import-export/article.md @@ -46,7 +46,7 @@ Also, we can put `export` separately. Here we first declare, and then export: -```js +```js // 📁 say.js function sayHi(user) { alert(`Hello, ${user}!`); @@ -93,25 +93,14 @@ At first sight, "import everything" seems such a cool thing, short to write, why Well, there are few reasons. -1. Modern build tools ([webpack](https://webpack.js.org/) and others) bundle modules together and optimize them to speedup loading and remove unused stuff. - - Let's say, we added a 3rd-party library `say.js` to our project with many functions: - ```js - // 📁 say.js - export function sayHi() { ... } - export function sayBye() { ... } - export function becomeSilent() { ... } - ``` +1. Explicitly listing what to import gives shorter names: `sayHi()` instead of `say.sayHi()`. +2. Explicit list of imports gives better overview of the code structure: what is used and where. It makes code support and refactoring easier. - Now if we only use one of `say.js` functions in our project: - ```js - // 📁 main.js - import {sayHi} from './say.js'; - ``` - ...Then the optimizer will see that and remove the other functions from the bundled code, thus making the build smaller. That is called "tree-shaking". +```smart header="Don't be afraid to import too much" +Modern build tools, such as [webpack](https://webpack.js.org/) and others, bundle modules together and optimize them to speedup loading. They also remove unused imports. -2. Explicitly listing what to import gives shorter names: `sayHi()` instead of `say.sayHi()`. -3. Explicit list of imports gives better overview of the code structure: what is used and where. It makes code support and refactoring easier. +For instance, if you `import * as library` from a huge code library, and then use only few methods, then unused ones [will not be included](https://github.com/webpack/webpack/tree/main/examples/harmony-unused#examplejs) into the optimized bundle. +``` ## Import "as" @@ -224,7 +213,7 @@ Without `default`, such an export would give an error: export class { // Error! (non-default export needs a name) constructor() {} } -``` +``` ### The "default" name @@ -326,7 +315,7 @@ Imagine, we're writing a "package": a folder with a lot of modules, with some of The file structure could be like this: ``` auth/ - index.js + index.js user.js helpers.js tests/ @@ -372,7 +361,7 @@ The syntax `export ... from ...` is just a shorter notation for such import-expo ```js // 📁 auth/index.js -// re-export login/logout +// re-export login/logout export {login, logout} from './helpers.js'; // re-export the default export as User @@ -380,7 +369,7 @@ export {default as User} from './user.js'; ... ``` -The notable difference of `export ... from` compared to `import/export` is that re-exported modules aren't available in the current file. So inside the above example of `auth/index.js` we can't use re-exported `login/logout` functions. +The notable difference of `export ... from` compared to `import/export` is that re-exported modules aren't available in the current file. So inside the above example of `auth/index.js` we can't use re-exported `login/logout` functions. ### Re-exporting the default export @@ -399,7 +388,7 @@ We can come across two problems with it: 1. `export User from './user.js'` won't work. That would lead to a syntax error. - To re-export the default export, we have to write `export {default as User}`, as in the example above. + To re-export the default export, we have to write `export {default as User}`, as in the example above. 2. `export * from './user.js'` re-exports only named exports, but ignores the default one. @@ -430,7 +419,7 @@ Import: - Importing named exports: - `import {x [as y], ...} from "module"` -- Importing the default export: +- Importing the default export: - `import x from "module"` - `import {default as x} from "module"` - Import all: diff --git a/1-js/99-js-misc/01-proxy/proxy.svg b/1-js/99-js-misc/01-proxy/proxy.svg index 157e350f4..6b2224cfd 100644 --- a/1-js/99-js-misc/01-proxy/proxy.svg +++ b/1-js/99-js-misc/01-proxy/proxy.svg @@ -1 +1 @@ -test: 5proxytargetget proxy.test5 \ No newline at end of file +test: 5proxytargetget proxy.test5 \ No newline at end of file diff --git a/1-js/99-js-misc/04-reference-type/article.md b/1-js/99-js-misc/04-reference-type/article.md index 6861837a9..894db8fc6 100644 --- a/1-js/99-js-misc/04-reference-type/article.md +++ b/1-js/99-js-misc/04-reference-type/article.md @@ -87,7 +87,7 @@ The result of a property access `user.hi` is not a function, but a value of Refe (user, "hi", true) ``` -When parentheses `()` are called on the Reference Type, they receive the full information about the object and its method, and can set the right `this` (`=user` in this case). +When parentheses `()` are called on the Reference Type, they receive the full information about the object and its method, and can set the right `this` (`user` in this case). Reference type is a special "intermediary" internal type, with the purpose to pass information from dot `.` to calling parentheses `()`. diff --git a/1-js/99-js-misc/06-unicode/article.md b/1-js/99-js-misc/06-unicode/article.md new file mode 100644 index 000000000..4f144f824 --- /dev/null +++ b/1-js/99-js-misc/06-unicode/article.md @@ -0,0 +1,172 @@ + +# Unicode, String internals + +```warn header="Advanced knowledge" +The section goes deeper into string internals. This knowledge will be useful for you if you plan to deal with emoji, rare mathematical or hieroglyphic characters, or other rare symbols. +``` + +As we already know, JavaScript strings are based on [Unicode](https://en.wikipedia.org/wiki/Unicode): each character is represented by a byte sequence of 1-4 bytes. + +JavaScript allows us to insert a character into a string by specifying its hexadecimal Unicode code with one of these three notations: + +- `\xXX` + + `XX` must be two hexadecimal digits with a value between `00` and `FF`, then `\xXX` is the character whose Unicode code is `XX`. + + Because the `\xXX` notation supports only two hexadecimal digits, it can be used only for the first 256 Unicode characters. + + These first 256 characters include the Latin alphabet, most basic syntax characters, and some others. For example, `"\x7A"` is the same as `"z"` (Unicode `U+007A`). + + ```js run + alert( "\x7A" ); // z + alert( "\xA9" ); // ©, the copyright symbol + ``` + +- `\uXXXX` + `XXXX` must be exactly 4 hex digits with the value between `0000` and `FFFF`, then `\uXXXX` is the character whose Unicode code is `XXXX`. + + Characters with Unicode values greater than `U+FFFF` can also be represented with this notation, but in this case, we will need to use a so called surrogate pair (we will talk about surrogate pairs later in this chapter). + + ```js run + alert( "\u00A9" ); // ©, the same as \xA9, using the 4-digit hex notation + alert( "\u044F" ); // я, the Cyrillic alphabet letter + alert( "\u2191" ); // ↑, the arrow up symbol + ``` + +- `\u{X…XXXXXX}` + + `X…XXXXXX` must be a hexadecimal value of 1 to 6 bytes between `0` and `10FFFF` (the highest code point defined by Unicode). This notation allows us to easily represent all existing Unicode characters. + + ```js run + alert( "\u{20331}" ); // 佫, a rare Chinese character (long Unicode) + alert( "\u{1F60D}" ); // 😍, a smiling face symbol (another long Unicode) + ``` + +## Surrogate pairs + +All frequently used characters have 2-byte codes (4 hex digits). Letters in most European languages, numbers, and the basic unified CJK ideographic sets (CJK -- from Chinese, Japanese, and Korean writing systems), have a 2-byte representation. + +Initially, JavaScript was based on UTF-16 encoding that only allowed 2 bytes per character. But 2 bytes only allow 65536 combinations and that's not enough for every possible symbol of Unicode. + +So rare symbols that require more than 2 bytes are encoded with a pair of 2-byte characters called "a surrogate pair". + +As a side effect, the length of such symbols is `2`: + +```js run +alert( '𝒳'.length ); // 2, MATHEMATICAL SCRIPT CAPITAL X +alert( '😂'.length ); // 2, FACE WITH TEARS OF JOY +alert( '𩷶'.length ); // 2, a rare Chinese character +``` + +That's because surrogate pairs did not exist at the time when JavaScript was created, and thus are not correctly processed by the language! + +We actually have a single symbol in each of the strings above, but the `length` property shows a length of `2`. + +Getting a symbol can also be tricky, because most language features treat surrogate pairs as two characters. + +For example, here we can see two odd characters in the output: + +```js run +alert( '𝒳'[0] ); // shows strange symbols... +alert( '𝒳'[1] ); // ...pieces of the surrogate pair +``` + +Pieces of a surrogate pair have no meaning without each other. So the alerts in the example above actually display garbage. + +Technically, surrogate pairs are also detectable by their codes: if a character has the code in the interval of `0xd800..0xdbff`, then it is the first part of the surrogate pair. The next character (second part) must have the code in interval `0xdc00..0xdfff`. These intervals are reserved exclusively for surrogate pairs by the standard. + +So the methods [String.fromCodePoint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCodePoint) and [str.codePointAt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/codePointAt) were added in JavaScript to deal with surrogate pairs. + +They are essentially the same as [String.fromCharCode](mdn:js/String/fromCharCode) and [str.charCodeAt](mdn:js/String/charCodeAt), but they treat surrogate pairs correctly. + +One can see the difference here: + +```js run +// charCodeAt is not surrogate-pair aware, so it gives codes for the 1st part of 𝒳: + +alert( '𝒳'.charCodeAt(0).toString(16) ); // d835 + +// codePointAt is surrogate-pair aware +alert( '𝒳'.codePointAt(0).toString(16) ); // 1d4b3, reads both parts of the surrogate pair +``` + +That said, if we take from position 1 (and that's rather incorrect here), then they both return only the 2nd part of the pair: + +```js run +alert( '𝒳'.charCodeAt(1).toString(16) ); // dcb3 +alert( '𝒳'.codePointAt(1).toString(16) ); // dcb3 +// meaningless 2nd half of the pair +``` + +You will find more ways to deal with surrogate pairs later in the chapter . There are probably special libraries for that too, but nothing famous enough to suggest here. + +````warn header="Takeaway: splitting strings at an arbitrary point is dangerous" +We can't just split a string at an arbitrary position, e.g. take `str.slice(0, 4)` and expect it to be a valid string, e.g.: + +```js run +alert( 'hi 😂'.slice(0, 4) ); // hi [?] +``` + +Here we can see a garbage character (first half of the smile surrogate pair) in the output. + +Just be aware of it if you intend to reliably work with surrogate pairs. May not be a big problem, but at least you should understand what happens. +```` + +## Diacritical marks and normalization + +In many languages, there are symbols that are composed of the base character with a mark above/under it. + +For instance, the letter `a` can be the base character for these characters: `àáâäãåā`. + +Most common "composite" characters have their own code in the Unicode table. But not all of them, because there are too many possible combinations. + +To support arbitrary compositions, the Unicode standard allows us to use several Unicode characters: the base character followed by one or many "mark" characters that "decorate" it. + +For instance, if we have `S` followed by the special "dot above" character (code `\u0307`), it is shown as Ṡ. + +```js run +alert( 'S\u0307' ); // Ṡ +``` + +If we need an additional mark above the letter (or below it) -- no problem, just add the necessary mark character. + +For instance, if we append a character "dot below" (code `\u0323`), then we'll have "S with dots above and below": `Ṩ`. + +For example: + +```js run +alert( 'S\u0307\u0323' ); // Ṩ +``` + +This provides great flexibility, but also an interesting problem: two characters may visually look the same, but be represented with different Unicode compositions. + +For instance: + +```js run +let s1 = 'S\u0307\u0323'; // Ṩ, S + dot above + dot below +let s2 = 'S\u0323\u0307'; // Ṩ, S + dot below + dot above + +alert( `s1: ${s1}, s2: ${s2}` ); + +alert( s1 == s2 ); // false though the characters look identical (?!) +``` + +To solve this, there exists a "Unicode normalization" algorithm that brings each string to the single "normal" form. + +It is implemented by [str.normalize()](mdn:js/String/normalize). + +```js run +alert( "S\u0307\u0323".normalize() == "S\u0323\u0307".normalize() ); // true +``` + +It's funny that in our situation `normalize()` actually brings together a sequence of 3 characters to one: `\u1e68` (S with two dots). + +```js run +alert( "S\u0307\u0323".normalize().length ); // 1 + +alert( "S\u0307\u0323".normalize() == "\u1e68" ); // true +``` + +In reality, this is not always the case. The reason is that the symbol `Ṩ` is "common enough", so Unicode creators included it in the main table and gave it the code. + +If you want to learn more about normalization rules and variants -- they are described in the appendix of the Unicode standard: [Unicode Normalization Forms](https://www.unicode.org/reports/tr15/), but for most practical purposes the information from this section is enough. diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/article.md b/1-js/99-js-misc/07-weakref-finalizationregistry/article.md new file mode 100644 index 000000000..777bf703c --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/article.md @@ -0,0 +1,483 @@ + +# WeakRef and FinalizationRegistry + +```warn header="\"Hidden\" features of the language" +This article covers a very narrowly focused topic, that most developers extremely rarely encounter in practice (and may not even be aware of its existence). + +We recommend skipping this chapter if you have just started learning JavaScript. +``` + +Recalling the basic concept of the *reachability principle* from the chapter, +we can note that the JavaScript engine is guaranteed to keep values in memory that are accessible or in use. + +For example: + + +```js +// the user variable holds a strong reference to the object +let user = { name: "John" }; + +// let's overwrite the value of the user variable +user = null; + +// the reference is lost and the object will be deleted from memory + +``` + +Or a similar, but slightly more complicated code with two strong references: + +```js +// the user variable holds a strong reference to the object +let user = { name: "John" }; + +// copied the strong reference to the object into the admin variable +*!* +let admin = user; +*/!* + +// let's overwrite the value of the user variable +user = null; + +// the object is still reachable through the admin variable +``` +The object `{ name: "John" }` would only be deleted from memory if there were no strong references to it (if we also overwrote the value of the `admin` variable). + +In JavaScript, there is a concept called `WeakRef`, which behaves slightly differently in this case. + + +````smart header="Terms: \"Strong reference\", \"Weak reference\"" +**Strong reference** - is a reference to an object or value, that prevents them from being deleted by the garbage collector. Thereby, keeping the object or value in memory, to which it points. + +This means, that the object or value remains in memory and is not collected by the garbage collector as long, as there are active strong references to it. + +In JavaScript, ordinary references to objects are strong references. For example: + +```js +// the user variable holds a strong reference to this object +let user = { name: "John" }; +``` +**Weak reference** - is a reference to an object or value, that does *not* prevent them from being deleted by the garbage collector. +An object or value can be deleted by the garbage collector if, the only remaining references to them are weak references. +```` + +## WeakRef + + +````warn header="Note of caution" +Before we dive into it, it is worth noting that the correct use of the structures discussed in this article requires very careful thought, and they are best avoided if possible. +```` + +`WeakRef` - is an object, that contains a weak reference to another object, called `target` or `referent`. + +The peculiarity of `WeakRef` is that it does not prevent the garbage collector from deleting its referent-object. In other words, a `WeakRef` object does not keep the `referent` object alive. + +Now let's take the `user` variable as the "referent" and create a weak reference from it to the `admin` variable. +To create a weak reference, you need to use the `WeakRef` constructor, passing in the target object (the object you want a weak reference to). + +In our case — this is the `user` variable: + + +```js +// the user variable holds a strong reference to the object +let user = { name: "John" }; + +// the admin variable holds a weak reference to the object +*!* +let admin = new WeakRef(user); +*/!* + +``` + +The diagram below depicts two types of references: a strong reference using the `user` variable and a weak reference using the `admin` variable: + +![](weakref-finalizationregistry-01.svg) + +Then, at some point, we stop using the `user` variable - it gets overwritten, goes out of scope, etc., while keeping the `WeakRef` instance in the `admin` variable: + +```js +// let's overwrite the value of the user variable +user = null; +``` + +A weak reference to an object is not enough to keep it "alive". When the only remaining references to a referent-object are weak references, the garbage collector is free to destroy this object and use its memory for something else. + +However, until the object is actually destroyed, the weak reference may return it, even if there are no more strong references to this object. +That is, our object becomes a kind of "[Schrödinger's cat](https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat)" – we cannot know for sure whether it's "alive" or "dead": + +![](weakref-finalizationregistry-02.svg) + +At this point, to get the object from the `WeakRef` instance, we will use its `deref()` method. + +The `deref()` method returns the referent-object that the `WeakRef` points to, if the object is still in memory. If the object has been deleted by the garbage collector, then the `deref()` method will return `undefined`: + + +```js +let ref = admin.deref(); + +if (ref) { + // the object is still accessible: we can perform any manipulations with it +} else { + // the object has been collected by the garbage collector +} +``` + +## WeakRef use cases + +`WeakRef` is typically used to create caches or [associative arrays](https://en.wikipedia.org/wiki/Associative_array) that store resource-intensive objects. +This allows one to avoid preventing these objects from being collected by the garbage collector solely based on their presence in the cache or associative array. + +One of the primary examples - is a situation when we have numerous binary image objects (for instance, represented as `ArrayBuffer` or `Blob`), and we want to associate a name or path with each image. +Existing data structures are not quite suitable for these purposes: + +- Using `Map` to create associations between names and images, or vice versa, will keep the image objects in memory since they are present in the `Map` as keys or values. +- `WeakMap` is ineligible for this goal either: because the objects represented as `WeakMap` keys use weak references, and are not protected from deletion by the garbage collector. + +But, in this situation, we need a data structure that would use weak references in its values. + +For this purpose, we can use a `Map` collection, whose values are `WeakRef` instances referring to the large objects we need. +Consequently, we will not keep these large and unnecessary objects in memory longer than they should be. + +Otherwise, this is a way to get the image object from the cache if it is still reachable. +If it has been garbage collected, we will re-generate or re-download it again. + +This way, less memory is used in some situations. + +## Example №1: using WeakRef for caching + +Below is a code snippet that demonstrates the technique of using `WeakRef`. + +In short, we use a `Map` with string keys and `WeakRef` objects as their values. +If the `WeakRef` object has not been collected by the garbage collector, we get it from the cache. +Otherwise, we re-download it again and put it in the cache for further possible reuse: + +```js +function fetchImg() { + // abstract function for downloading images... +} + +function weakRefCache(fetchImg) { // (1) + const imgCache = new Map(); // (2) + + return (imgName) => { // (3) + const cachedImg = imgCache.get(imgName); // (4) + + if (cachedImg?.deref()) { // (5) + return cachedImg?.deref(); + } + + const newImg = fetchImg(imgName); // (6) + imgCache.set(imgName, new WeakRef(newImg)); // (7) + + return newImg; + }; +} + +const getCachedImg = weakRefCache(fetchImg); +``` + +Let's delve into the details of what happened here: +1. `weakRefCache` - is a higher-order function that takes another function, `fetchImg`, as an argument. In this example, we can neglect a detailed description of the `fetchImg` function, since it can be any logic for downloading images. +2. `imgCache` - is a cache of images, that stores cached results of the `fetchImg` function, in the form of string keys (image name) and `WeakRef` objects as their values. +3. Return an anonymous function that takes the image name as an argument. This argument will be used as a key for the cached image. +4. Trying to get the cached result from the cache, using the provided key (image name). +5. If the cache contains a value for the specified key, and the `WeakRef` object has not been deleted by the garbage collector, return the cached result. +6. If there is no entry in the cache with the requested key, or `deref()` method returns `undefined` (meaning that the `WeakRef` object has been garbage collected), the `fetchImg` function downloads the image again. +7. Put the downloaded image into the cache as a `WeakRef` object. + +Now we have a `Map` collection, where the keys - are image names as strings, and values - are `WeakRef` objects containing the images themselves. + +This technique helps to avoid allocating a large amount of memory for resource-intensive objects, that nobody uses anymore. +It also saves memory and time in case of reusing cached objects. + +Here is a visual representation of what this code looks like: + +![](weakref-finalizationregistry-03.svg) + +But, this implementation has its drawbacks: over time, `Map` will be filled with strings as keys, that point to a `WeakRef`, whose referent-object has already been garbage collected: + +![](weakref-finalizationregistry-04.svg) + +One way to handle this problem - is to periodically scavenge the cache and clear out "dead" entries. +Another way - is to use finalizers, which we will explore next. + + +## Example №2: Using WeakRef to track DOM objects + +Another use case for `WeakRef` - is tracking DOM objects. + +Let's imagine a scenario where some third-party code or library interacts with elements on our page as long as they exist in the DOM. +For example, it could be an external utility for monitoring and notifying about the system's state (commonly so-called "logger" – a program that sends informational messages called "logs"). + +Interactive example: + +[codetabs height=420 src="weakref-dom"] + +When the "Start sending messages" button is clicked, in the so-called "logs display window" (an element with the `.window__body` class), messages (logs) start to appear. + +But, as soon as this element is deleted from the DOM, the logger should stop sending messages. +To reproduce the removal of this element, just click the "Close" button in the top right corner. + +In order not to complicate our work, and not to notify third-party code every time our DOM-element is available, and when it is not, it will be enough to create a weak reference to it using `WeakRef`. + +Once the element is removed from the DOM, the logger will notice it and stop sending messages. + +Now let's take a closer look at the source code (*tab `index.js`*): + +1. Get the DOM-element of the "Start sending messages" button. +2. Get the DOM-element of the "Close" button. +3. Get the DOM-element of the logs display window using the `new WeakRef()` constructor. This way, the `windowElementRef` variable holds a weak reference to the DOM-element. +4. Add an event listener on the "Start sending messages" button, responsible for starting the logger when clicked. +5. Add an event listener on the "Close" button, responsible for closing the logs display window when clicked. +6. Use `setInterval` to start displaying a new message every second. +7. If the DOM-element of the logs display window is still accessible and kept in memory, create and send a new message. +8. If the `deref()` method returns `undefined`, it means that the DOM-element has been deleted from memory. In this case, the logger stops displaying messages and clears the timer. +9. `alert`, which will be called, after the DOM-element of the logs display window is deleted from memory (i.e. after clicking the "Close" button). **Note, that deletion from memory may not happen immediately, as it depends only on the internal mechanisms of the garbage collector.** + + We cannot control this process directly from the code. However, despite this, we still have the option to force garbage collection from the browser. + + In Google Chrome, for example, to do this, you need to open the developer tools (`key:Ctrl` + `key:Shift` + `key:J` on Windows/Linux or `key:Option` + `key:⌘` + `key:J` on macOS), go to the "Performance" tab, and click on the bin icon button – "Collect garbage": + + ![](google-chrome-developer-tools.png) + +
+ This functionality is supported in most modern browsers. After the actions are taken, the alert will trigger immediately. + +## FinalizationRegistry + +Now it is time to talk about finalizers. Before we move on, let's clarify the terminology: + +**Cleanup callback (finalizer)** - is a function that is executed, when an object, registered in the `FinalizationRegistry`, is deleted from memory by the garbage collector. + +Its purpose - is to provide the ability to perform additional operations, related to the object, after it has been finally deleted from memory. + +**Registry** (or `FinalizationRegistry`) - is a special object in JavaScript that manages the registration and unregistration of objects and their cleanup callbacks. + +This mechanism allows registering an object to track and associate a cleanup callback with it. +Essentially it is a structure that stores information about registered objects and their cleanup callbacks, and then automatically invokes those callbacks when the objects are deleted from memory. + +To create an instance of the `FinalizationRegistry`, it needs to call its constructor, which takes a single argument - the cleanup callback (finalizer). + +Syntax: + +```js +function cleanupCallback(heldValue) { + // cleanup callback code +} + +const registry = new FinalizationRegistry(cleanupCallback); +``` + +Here: + +- `cleanupCallback` - a cleanup callback that will be automatically called when a registered object is deleted from memory. +- `heldValue` - the value that is passed as an argument to the cleanup callback. If `heldValue` is an object, the registry keeps a strong reference to it. +- `registry` - an instance of `FinalizationRegistry`. + +`FinalizationRegistry` methods: + +- `register(target, heldValue [, unregisterToken])` - used to register objects in the registry. + + `target` - the object being registered for tracking. If the `target` is garbage collected, the cleanup callback will be called with `heldValue` as its argument. + + Optional `unregisterToken` – an unregistration token. It can be passed to unregister an object before the garbage collector deletes it. Typically, the `target` object is used as `unregisterToken`, which is the standard practice. +- `unregister(unregisterToken)` - the `unregister` method is used to unregister an object from the registry. It takes one argument - `unregisterToken` (the unregister token that was obtained when registering the object). + +Now let's move on to a simple example. Let's use the already-known `user` object and create an instance of `FinalizationRegistry`: + +```js +let user = { name: "John" }; + +const registry = new FinalizationRegistry((heldValue) => { + console.log(`${heldValue} has been collected by the garbage collector.`); +}); +``` + +Then, we will register the object, that requires a cleanup callback by calling the `register` method: + +```js +registry.register(user, user.name); +``` + +The registry does not keep a strong reference to the object being registered, as this would defeat its purpose. If the registry kept a strong reference, then the object would never be garbage collected. + +If the object is deleted by the garbage collector, our cleanup callback may be called at some point in the future, with the `heldValue` passed to it: + +```js +// When the user object is deleted by the garbage collector, the following message will be printed in the console: +"John has been collected by the garbage collector." +``` + +There are also situations where, even in implementations that use a cleanup callback, there is a chance that it will not be called. + +For example: +- When the program fully terminates its operation (for example, when closing a tab in a browser). +- When the `FinalizationRegistry` instance itself is no longer reachable to JavaScript code. + If the object that creates the `FinalizationRegistry` instance goes out of scope or is deleted, the cleanup callbacks registered in that registry might also not be invoked. + +## Caching with FinalizationRegistry + +Returning to our *weak* cache example, we can notice the following: +- Even though the values wrapped in the `WeakRef` have been collected by the garbage collector, there is still an issue of "memory leakage" in the form of the remaining keys, whose values have been collected by the garbage collector. + +Here is an improved caching example using `FinalizationRegistry`: + +```js +function fetchImg() { + // abstract function for downloading images... +} + +function weakRefCache(fetchImg) { + const imgCache = new Map(); + + *!* + const registry = new FinalizationRegistry((imgName) => { // (1) + const cachedImg = imgCache.get(imgName); + if (cachedImg && !cachedImg.deref()) imgCache.delete(imgName); + }); + */!* + + return (imgName) => { + const cachedImg = imgCache.get(imgName); + + if (cachedImg?.deref()) { + return cachedImg?.deref(); + } + + const newImg = fetchImg(imgName); + imgCache.set(imgName, new WeakRef(newImg)); + *!* + registry.register(newImg, imgName); // (2) + */!* + + return newImg; + }; +} + +const getCachedImg = weakRefCache(fetchImg); +``` + +1. To manage the cleanup of "dead" cache entries, when the associated `WeakRef` objects are collected by the garbage collector, we create a `FinalizationRegistry` cleanup registry. + + The important point here is, that in the cleanup callback, it should be checked, if the entry was deleted by the garbage collector and not re-added, in order not to delete a "live" entry. +2. Once the new value (image) is downloaded and put into the cache, we register it in the finalizer registry to track the `WeakRef` object. + +This implementation contains only actual or "live" key/value pairs. +In this case, each `WeakRef` object is registered in the `FinalizationRegistry`. +And after the objects are cleaned up by the garbage collector, the cleanup callback will delete all `undefined` values. + +Here is a visual representation of the updated code: + +![](weakref-finalizationregistry-05.svg) + +A key aspect of the updated implementation is that finalizers allow parallel processes to be created between the "main" program and cleanup callbacks. +In the context of JavaScript, the "main" program - is our JavaScript-code, that runs and executes in our application or web page. + +Hence, from the moment an object is marked for deletion by the garbage collector, and to the actual execution of the cleanup callback, there may be a certain time gap. +It is important to understand that during this time gap, the main program can make any changes to the object or even bring it back to memory. + +That's why, in the cleanup callback, we must check to see if an entry has been added back to the cache by the main program to avoid deleting "live" entries. +Similarly, when searching for a key in the cache, there is a chance that the value has been deleted by the garbage collector, but the cleanup callback has not been executed yet. + +Such situations require special attention if you are working with `FinalizationRegistry`. + +## Using WeakRef and FinalizationRegistry in practice + +Moving from theory to practice, imagine a real-life scenario, where a user synchronizes their photos on a mobile device with some cloud service +(such as [iCloud](https://en.wikipedia.org/wiki/ICloud) or [Google Photos](https://en.wikipedia.org/wiki/Google_Photos)), +and wants to view them from other devices. In addition to the basic functionality of viewing photos, such services offer a lot of additional features, for example: + +- Photo editing and video effects. +- Creating "memories" and albums. +- Video montage from a series of photos. +- ...and much more. + +Here, as an example, we will use a fairly primitive implementation of such a service. +The main point - is to show a possible scenario of using `WeakRef` and `FinalizationRegistry` together in real life. + +Here is what it looks like: + +![](weakref-finalizationregistry-demo-01.png) + +
+On the left side, there is a cloud library of photos (they are displayed as thumbnails). +We can select the images we need and create a collage, by clicking the "Create collage" button on the right side of the page. +Then, the resulting collage can be downloaded as an image. +

+ +To increase page loading speed, it would be reasonable to download and display photo thumbnails in *compressed* quality. +But, to create a collage from selected photos, download and use them in *full-size* quality. + +Below, we can see, that the intrinsic size of the thumbnails is 240x240 pixels. +The size was chosen on purpose to increase loading speed. +Moreover, we do not need full-size photos in preview mode. + +![](weakref-finalizationregistry-demo-02.png) + +
+Let's assume, that we need to create a collage of 4 photos: we select them, and then click the "Create collage" button. +At this stage, the already known to us weakRefCache function checks whether the required image is in the cache. +If not, it downloads it from the cloud and puts it in the cache for further use. +This happens for each selected image: +

+ +![](weakref-finalizationregistry-demo-03.gif) + +
+ +Paying attention to the output in the console, you can see, which of the photos were downloaded from the cloud - this is indicated by FETCHED_IMAGE. +Since this is the first attempt to create a collage, this means, that at this stage the "weak cache" was still empty, and all the photos were downloaded from the cloud and put in it. + +But, along with the process of downloading images, there is also a process of memory cleanup by the garbage collector. +This means, that the object stored in the cache, which we refer to, using a weak reference, is deleted by the garbage collector. +And our finalizer executes successfully, thereby deleting the key, by which the image was stored in the cache. +CLEANED_IMAGE notifies us about it: + +![](weakref-finalizationregistry-demo-04.jpg) + +
+Next, we realize that we do not like the resulting collage, and decide to change one of the images and create a new one. +To do this, just deselect the unnecessary image, select another one, and click the "Create collage" button again: +

+ +![](weakref-finalizationregistry-demo-05.gif) + +
+But this time not all images were downloaded from the network, and one of them was taken from the weak cache: the CACHED_IMAGE message tells us about it. +This means that at the time of collage creation, the garbage collector had not yet deleted our image, and we boldly took it from the cache, +thereby reducing the number of network requests and speeding up the overall time of the collage creation process: +

+ +![](weakref-finalizationregistry-demo-06.jpg) + +
+Let's "play around" a little more, by replacing one of the images again and creating a new collage: +

+ +![](weakref-finalizationregistry-demo-07.gif) + +
+This time the result is even more impressive. Of the 4 images selected, 3 of them were taken from the weak cache, and only one had to be downloaded from the network. +The reduction in network load was about 75%. Impressive, isn't it? +

+ +![](weakref-finalizationregistry-demo-08.jpg) + +
+ +Of course, it is important to remember, that such behavior is not guaranteed, and depends on the specific implementation and operation of the garbage collector. + +Based on this, a completely logical question immediately arises: why do not we use an ordinary cache, where we can manage its entities ourselves, instead of relying on the garbage collector? +That's right, in the vast majority of cases there is no need to use `WeakRef` and `FinalizationRegistry`. + +Here, we simply demonstrated an alternative implementation of similar functionality, using a non-trivial approach with interesting language features. +Still, we cannot rely on this example, if we need a constant and predictable result. + +You can [open this example in the sandbox](sandbox:weakref-finalizationregistry). + +## Summary + +`WeakRef` - designed to create weak references to objects, allowing them to be deleted from memory by the garbage collector if there are no longer strong references to them. +This is beneficial for addressing excessive memory usage and optimizing the utilization of system resources in applications. + +`FinalizationRegistry` - is a tool for registering callbacks, that are executed when objects that are no longer strongly referenced, are destroyed. +This allows releasing resources associated with the object or performing other necessary operations before deleting the object from memory. \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/google-chrome-developer-tools.png b/1-js/99-js-misc/07-weakref-finalizationregistry/google-chrome-developer-tools.png new file mode 100644 index 000000000..021637342 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/google-chrome-developer-tools.png differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.css b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.css new file mode 100644 index 000000000..f6df812d0 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.css @@ -0,0 +1,49 @@ +.app { + display: flex; + flex-direction: column; + gap: 16px; +} + +.start-messages { + width: fit-content; +} + +.window { + width: 100%; + border: 2px solid #464154; + overflow: hidden; +} + +.window__header { + position: sticky; + padding: 8px; + display: flex; + justify-content: space-between; + align-items: center; + background-color: #736e7e; +} + +.window__title { + margin: 0; + font-size: 24px; + font-weight: 700; + color: white; + letter-spacing: 1px; +} + +.window__button { + padding: 4px; + background: #4f495c; + outline: none; + border: 2px solid #464154; + color: white; + font-size: 16px; + cursor: pointer; +} + +.window__body { + height: 250px; + padding: 16px; + overflow: scroll; + background-color: #736e7e33; +} \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.html b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.html new file mode 100644 index 000000000..7f93af4c7 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.html @@ -0,0 +1,28 @@ + + + + + + + WeakRef DOM Logger + + + + +
+ +
+
+

Messages:

+ +
+
+ No messages. +
+
+
+ + + + + diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.js b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.js new file mode 100644 index 000000000..ea55b4478 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-dom.view/index.js @@ -0,0 +1,24 @@ +const startMessagesBtn = document.querySelector('.start-messages'); // (1) +const closeWindowBtn = document.querySelector('.window__button'); // (2) +const windowElementRef = new WeakRef(document.querySelector(".window__body")); // (3) + +startMessagesBtn.addEventListener('click', () => { // (4) + startMessages(windowElementRef); + startMessagesBtn.disabled = true; +}); + +closeWindowBtn.addEventListener('click', () => document.querySelector(".window__body").remove()); // (5) + + +const startMessages = (element) => { + const timerId = setInterval(() => { // (6) + if (element.deref()) { // (7) + const payload = document.createElement("p"); + payload.textContent = `Message: System status OK: ${new Date().toLocaleTimeString()}`; + element.deref().append(payload); + } else { // (8) + alert("The element has been deleted."); // (9) + clearInterval(timerId); + } + }, 1000); +}; \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-01.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-01.svg new file mode 100644 index 000000000..2a507dbcd --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-01.svg @@ -0,0 +1,32 @@ + + + + + + + + user + + name: "John" + Object + + <global> + + + + + + + + + + + + + + + + admin + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-02.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-02.svg new file mode 100644 index 000000000..6cc199a12 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-02.svg @@ -0,0 +1,33 @@ + + + + + + + + + + <global> + + + name: "John" + Object + + + + + + + + + + + + admin + + + + + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-03.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-03.svg new file mode 100644 index 000000000..949a14f9f --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-03.svg @@ -0,0 +1,75 @@ + + + + + + + + + + + + + + + key + value + image-01.jpg + image-02.jpg + image-03.jpg + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + + + + WeakRef object + + + + + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-04.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-04.svg new file mode 100644 index 000000000..1177d6580 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-04.svg @@ -0,0 +1,77 @@ + + + + + + + name: "John" + Object + + admin + + + + + + + + + key + value + image-01.jpg + image-02.jpg + image-03.jpg + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + WeakRef object + + + + + undefined + undefined + + + + + + + + + + + + + + + WeakRef object + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-05.svg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-05.svg new file mode 100644 index 000000000..e738f8e7e --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-05.svg @@ -0,0 +1,103 @@ + + + + + + + + + + + + + + + + image-02.jpg + image-03.jpg + + key + value + image-01.jpg + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + WeakRef object + + + + + + + + + + + + + + + + WeakRef object + + + + + undefined + undefined + Deleted by FinalizationRegistry cleanup callback + + + + + + + + + + + + + + + WeakRef object + + + + \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-01.png b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-01.png new file mode 100644 index 000000000..fc33a023a Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-01.png differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-02.png b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-02.png new file mode 100644 index 000000000..7d8bb01e8 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-02.png differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-03.gif b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-03.gif new file mode 100644 index 000000000..b81966dda Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-03.gif differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-04.jpg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-04.jpg new file mode 100644 index 000000000..ba60f1e86 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-04.jpg differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-05.gif b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-05.gif new file mode 100644 index 000000000..d34bda4d7 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-05.gif differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-06.jpg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-06.jpg new file mode 100644 index 000000000..b2655540f Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-06.jpg differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-07.gif b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-07.gif new file mode 100644 index 000000000..51f874518 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-07.gif differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-08.jpg b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-08.jpg new file mode 100644 index 000000000..5f98aec14 Binary files /dev/null and b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry-demo-08.jpg differ diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.css b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.css new file mode 100644 index 000000000..e6c9e3960 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.css @@ -0,0 +1,285 @@ +:root { + --mineralGreen: 60, 98, 85; + --viridianGreen: 97, 135, 110; + --swampGreen: 166, 187, 141; + --fallGreen: 234, 231, 177; + --brinkPink: #FA7070; + --silverChalice: 178, 178, 178; + --white: 255, 255, 255; + --black: 0, 0, 0; + + --topBarHeight: 64px; + --itemPadding: 32px; + --containerGap: 8px; +} + +@keyframes zoom-in { + 0% { + transform: scale(1, 1); + } + + 100% { + transform: scale(1.30, 1.30); + } +} + +body, html { + margin: 0; + padding: 0; +} + +.app { + min-height: 100vh; + background-color: rgba(var(--viridianGreen), 0.5); +} + +.header { + height: var(--topBarHeight); + padding: 0 24px; + display: flex; + justify-content: space-between; + align-items: center; + background-color: rgba(var(--mineralGreen), 1); +} + +.header-text { + color: white; +} + +.container { + display: flex; + gap: 24px; + padding: var(--itemPadding); +} + +.item { + width: 50%; +} + +.item--scrollable { + overflow-y: scroll; + height: calc(100vh - var(--topBarHeight) - (var(--itemPadding) * 2)); +} + +.thumbnails-container { + display: flex; + flex-wrap: wrap; + gap: 8px; + justify-content: center; + align-items: center; +} + +.thumbnail-item { + width: calc(25% - var(--containerGap)); + cursor: pointer; + position: relative; +} + +.thumbnail-item:hover { + z-index: 1; + animation: zoom-in 0.1s forwards; +} + +.thumbnail-item--selected { + outline: 3px solid rgba(var(--fallGreen), 1); + outline-offset: -3px; +} + +.badge { + width: 16px; + height: 16px; + display: flex; + justify-content: center; + align-items: center; + padding: 4px; + position: absolute; + right: 8px; + bottom: 8px; + border-radius: 50%; + border: 2px solid rgba(var(--fallGreen), 1); + background-color: rgba(var(--swampGreen), 1); +} + +.check { + display: inline-block; + transform: rotate(45deg); + border-bottom: 2px solid white; + border-right: 2px solid white; + width: 6px; + height: 12px; +} + +.img { + width: 100%; + height: 100%; + object-fit: cover; +} + +.actions { + display: flex; + flex-wrap: wrap; + justify-content: center; + align-content: center; + padding: 0 0 16px 0; + gap: 8px; +} + +.select { + padding: 16px; + cursor: pointer; + font-weight: 700; + color: rgba(var(--black), 1); + border: 2px solid rgba(var(--swampGreen), 0.5); + background-color: rgba(var(--swampGreen), 1); +} + +.select:disabled { + cursor: not-allowed; + background-color: rgba(var(--silverChalice), 1); + color: rgba(var(--black), 0.5); + border: 2px solid rgba(var(--black), 0.25); +} + +.btn { + outline: none; + padding: 16px; + cursor: pointer; + font-weight: 700; + color: rgba(var(--black), 1); + border: 2px solid rgba(var(--black), 0.5); +} + +.btn--primary { + background-color: rgba(var(--mineralGreen), 1); +} + +.btn--primary:hover:not([disabled]) { + background-color: rgba(var(--mineralGreen), 0.85); +} + +.btn--secondary { + background-color: rgba(var(--viridianGreen), 0.5); +} + +.btn--secondary:hover:not([disabled]) { + background-color: rgba(var(--swampGreen), 0.25); +} + +.btn--success { + background-color: rgba(var(--fallGreen), 1); +} + +.btn--success:hover:not([disabled]) { + background-color: rgba(var(--fallGreen), 0.85); +} + +.btn:disabled { + cursor: not-allowed; + background-color: rgba(var(--silverChalice), 1); + color: rgba(var(--black), 0.5); + border: 2px solid rgba(var(--black), 0.25); +} + +.previewContainer { + margin-bottom: 16px; + display: flex; + width: 100%; + height: 40vh; + overflow: scroll; + border: 3px solid rgba(var(--black), 1); +} + +.previewContainer--disabled { + background-color: rgba(var(--black), 0.1); + cursor: not-allowed; +} + +.canvas { + margin: auto; + display: none; +} + +.canvas--ready { + display: block; +} + +.spinnerContainer { + display: flex; + gap: 8px; + flex-direction: column; + align-content: center; + align-items: center; + margin: auto; +} + +.spinnerContainer--hidden { + display: none; +} + +.spinnerText { + margin: 0; + color: rgba(var(--mineralGreen), 1); +} + +.spinner { + display: inline-block; + width: 50px; + height: 50px; + margin: auto; + border: 3px solid rgba(var(--mineralGreen), 0.3); + border-radius: 50%; + border-top-color: rgba(var(--mineralGreen), 0.9); + animation: spin 1s ease-in-out infinite; +} + +@keyframes spin { + to { + transform: rotate(360deg); + } +} + +.loggerContainer { + display: flex; + flex-direction: column; + gap: 8px; + padding: 0 8px 8px 8px; + width: 100%; + min-height: 30vh; + max-height: 30vh; + overflow: scroll; + border-left: 3px solid rgba(var(--black), 0.25); +} + +.logger-title { + display: flex; + align-items: center; + padding: 8px; + position: sticky; + height: 40px; + min-height: 40px; + top: 0; + left: 0; + background-color: rgba(var(--viridianGreen), 1); + font-size: 24px; + font-weight: 700; + margin: 0; +} + +.logger-item { + font-size: 14px; + padding: 8px; + border: 2px solid #5a5a5a; + color: white; +} + +.logger--primary { + background-color: #13315a; +} + +.logger--success { + background-color: #385a4e; +} + +.logger--error { + background-color: #5a1a24; +} \ No newline at end of file diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.html b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.html new file mode 100644 index 000000000..7ce52f927 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.html @@ -0,0 +1,49 @@ + + + + + + + Photo Library Collage + + + + +
+
+

+ Photo Library Collage +

+
+
+
+ +
+
+
+
+
+ + + + +
+
+
+
+

+
+ +
+
+

Logger:

+
+
+
+
+
+ + + + + diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.js b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.js new file mode 100644 index 000000000..983b34d9a --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/index.js @@ -0,0 +1,228 @@ +import { + createImageFile, + loadImage, + weakRefCache, + LAYOUTS, + images, + THUMBNAIL_PARAMS, + stateObj, +} from "./utils.js"; + +export const state = new Proxy(stateObj, { + set(target, property, value) { + const previousValue = target[property]; + + target[property] = value; + + if (previousValue !== value) { + handleStateChange(target); + } + + return true; + }, +}); + +// Elements. +const thumbnailsContainerEl = document.querySelector(".thumbnails-container"); +const selectEl = document.querySelector(".select"); +const previewContainerEl = document.querySelector(".previewContainer"); +const canvasEl = document.querySelector(".canvas"); +const createCollageBtn = document.querySelector(".btn-create-collage"); +const startOverBtn = document.querySelector(".btn-start-over"); +const downloadBtn = document.querySelector(".btn-download"); +const spinnerContainerEl = document.querySelector(".spinnerContainer"); +const spinnerTextEl = document.querySelector(".spinnerText"); +const loggerContainerEl = document.querySelector(".loggerContainer"); + +// Renders. +// Render thumbnails previews. +images.forEach((img) => { + const thumbnail = document.createElement("div"); + thumbnail.classList.add("thumbnail-item"); + + thumbnail.innerHTML = ` + + `; + + thumbnail.addEventListener("click", (e) => handleSelection(e, img)); + + thumbnailsContainerEl.appendChild(thumbnail); +}); +// Render layouts select. +LAYOUTS.forEach((layout) => { + const option = document.createElement("option"); + option.value = JSON.stringify(layout); + option.innerHTML = layout.name; + selectEl.appendChild(option); +}); + +const handleStateChange = (state) => { + if (state.loading) { + selectEl.disabled = true; + createCollageBtn.disabled = true; + startOverBtn.disabled = true; + downloadBtn.disabled = true; + previewContainerEl.classList.add("previewContainer--disabled"); + spinnerContainerEl.classList.remove("spinnerContainer--hidden"); + spinnerTextEl.innerText = "Loading..."; + canvasEl.classList.remove("canvas--ready"); + } else if (!state.loading) { + selectEl.disabled = false; + createCollageBtn.disabled = false; + startOverBtn.disabled = false; + downloadBtn.disabled = false; + previewContainerEl.classList.remove("previewContainer--disabled"); + spinnerContainerEl.classList.add("spinnerContainer--hidden"); + canvasEl.classList.add("canvas--ready"); + } + + if (!state.selectedImages.size) { + createCollageBtn.disabled = true; + document.querySelectorAll(".badge").forEach((item) => item.remove()); + } else if (state.selectedImages.size && !state.loading) { + createCollageBtn.disabled = false; + } + + if (!state.collageRendered) { + downloadBtn.disabled = true; + } else if (state.collageRendered) { + downloadBtn.disabled = false; + } +}; +handleStateChange(state); + +const handleSelection = (e, imgName) => { + const imgEl = e.currentTarget; + + imgEl.classList.toggle("thumbnail-item--selected"); + + if (state.selectedImages.has(imgName)) { + state.selectedImages.delete(imgName); + state.selectedImages = new Set(state.selectedImages); + imgEl.querySelector(".badge")?.remove(); + } else { + state.selectedImages = new Set(state.selectedImages.add(imgName)); + + const badge = document.createElement("div"); + badge.classList.add("badge"); + badge.innerHTML = ` +
+ `; + imgEl.prepend(badge); + } +}; + +// Make a wrapper function. +let getCachedImage; +(async () => { + getCachedImage = await weakRefCache(loadImage); +})(); + +const calculateGridRows = (blobsLength) => + Math.ceil(blobsLength / state.currentLayout.columns); + +const drawCollage = (images) => { + state.drawing = true; + + let context = canvasEl.getContext("2d"); + + /** + * Calculate canvas dimensions based on the current layout. + * */ + context.canvas.width = + state.currentLayout.itemWidth * state.currentLayout.columns; + context.canvas.height = + calculateGridRows(images.length) * state.currentLayout.itemHeight; + + let currentRow = 0; + let currentCanvasDx = 0; + let currentCanvasDy = 0; + + for (let i = 0; i < images.length; i++) { + /** + * Get current row of the collage. + * */ + if (i % state.currentLayout.columns === 0) { + currentRow += 1; + currentCanvasDx = 0; + + if (currentRow > 1) { + currentCanvasDy += state.currentLayout.itemHeight; + } + } + + context.drawImage( + images[i], + 0, + 0, + images[i].width, + images[i].height, + currentCanvasDx, + currentCanvasDy, + state.currentLayout.itemWidth, + state.currentLayout.itemHeight, + ); + + currentCanvasDx += state.currentLayout.itemWidth; + } + + state.drawing = false; + state.collageRendered = true; +}; + +const createCollage = async () => { + state.loading = true; + + const images = []; + + for (const image of state.selectedImages.values()) { + const blobImage = await getCachedImage(image.img); + + const url = URL.createObjectURL(blobImage); + const img = await createImageFile(url); + + images.push(img); + URL.revokeObjectURL(url); + } + + state.loading = false; + + drawCollage(images); +}; + +/** + * Clear all settled data to start over. + * */ +const startOver = () => { + state.selectedImages = new Set(); + state.collageRendered = false; + const context = canvasEl.getContext("2d"); + context.clearRect(0, 0, canvasEl.width, canvasEl.height); + + document + .querySelectorAll(".thumbnail-item--selected") + .forEach((item) => item.classList.remove("thumbnail-item--selected")); + + loggerContainerEl.innerHTML = '

Logger:

'; +}; + +const downloadCollage = () => { + const date = new Date(); + const fileName = `Collage-${date.getDay()}-${date.getMonth()}-${date.getFullYear()}.png`; + const img = canvasEl.toDataURL("image/png"); + const link = document.createElement("a"); + link.download = fileName; + link.href = img; + link.click(); + link.remove(); +}; + +const changeLayout = ({ target }) => { + state.currentLayout = JSON.parse(target.value); +}; + +// Listeners. +selectEl.addEventListener("change", changeLayout); +createCollageBtn.addEventListener("click", createCollage); +startOverBtn.addEventListener("click", startOver); +downloadBtn.addEventListener("click", downloadCollage); diff --git a/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/utils.js b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/utils.js new file mode 100644 index 000000000..f0140c116 --- /dev/null +++ b/1-js/99-js-misc/07-weakref-finalizationregistry/weakref-finalizationregistry.view/utils.js @@ -0,0 +1,321 @@ +const loggerContainerEl = document.querySelector(".loggerContainer"); + +export const images = [ + { + img: "https://images.unsplash.com/photo-1471357674240-e1a485acb3e1", + }, + { + img: "https://images.unsplash.com/photo-1589118949245-7d38baf380d6", + }, + { + img: "https://images.unsplash.com/photo-1527631746610-bca00a040d60", + }, + { + img: "https://images.unsplash.com/photo-1500835556837-99ac94a94552", + }, + { + img: "https://images.unsplash.com/photo-1503220317375-aaad61436b1b", + }, + { + img: "https://images.unsplash.com/photo-1501785888041-af3ef285b470", + }, + { + img: "https://images.unsplash.com/photo-1528543606781-2f6e6857f318", + }, + { + img: "https://images.unsplash.com/photo-1523906834658-6e24ef2386f9", + }, + { + img: "https://images.unsplash.com/photo-1539635278303-d4002c07eae3", + }, + { + img: "https://images.unsplash.com/photo-1533105079780-92b9be482077", + }, + { + img: "https://images.unsplash.com/photo-1516483638261-f4dbaf036963", + }, + { + img: "https://images.unsplash.com/photo-1502791451862-7bd8c1df43a7", + }, + { + img: "https://plus.unsplash.com/premium_photo-1663047367140-91adf819d007", + }, + { + img: "https://images.unsplash.com/photo-1506197603052-3cc9c3a201bd", + }, + { + img: "https://images.unsplash.com/photo-1517760444937-f6397edcbbcd", + }, + { + img: "https://images.unsplash.com/photo-1518684079-3c830dcef090", + }, + { + img: "https://images.unsplash.com/photo-1505832018823-50331d70d237", + }, + { + img: "https://images.unsplash.com/photo-1524850011238-e3d235c7d4c9", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661277758451-b5053309eea1", + }, + { + img: "https://images.unsplash.com/photo-1541410965313-d53b3c16ef17", + }, + { + img: "https://images.unsplash.com/photo-1528702748617-c64d49f918af", + }, + { + img: "https://images.unsplash.com/photo-1502003148287-a82ef80a6abc", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661281272544-5204ea3a481a", + }, + { + img: "https://images.unsplash.com/photo-1503457574462-bd27054394c1", + }, + { + img: "https://images.unsplash.com/photo-1499363536502-87642509e31b", + }, + { + img: "https://images.unsplash.com/photo-1551918120-9739cb430c6d", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661382219642-43e54f7e81d7", + }, + { + img: "https://images.unsplash.com/photo-1497262693247-aa258f96c4f5", + }, + { + img: "https://images.unsplash.com/photo-1525254134158-4fd5fdd45793", + }, + { + img: "https://plus.unsplash.com/premium_photo-1661274025419-4c54107d5c48", + }, + { + img: "https://images.unsplash.com/photo-1553697388-94e804e2f0f6", + }, + { + img: "https://images.unsplash.com/photo-1574260031597-bcd9eb192b4f", + }, + { + img: "https://images.unsplash.com/photo-1536323760109-ca8c07450053", + }, + { + img: "https://images.unsplash.com/photo-1527824404775-dce343118ebc", + }, + { + img: "https://images.unsplash.com/photo-1612278675615-7b093b07772d", + }, + { + img: "https://images.unsplash.com/photo-1522010675502-c7b3888985f6", + }, + { + img: "https://images.unsplash.com/photo-1501555088652-021faa106b9b", + }, + { + img: "https://plus.unsplash.com/premium_photo-1669223469435-27e091439169", + }, + { + img: "https://images.unsplash.com/photo-1506012787146-f92b2d7d6d96", + }, + { + img: "https://images.unsplash.com/photo-1511739001486-6bfe10ce785f", + }, + { + img: "https://images.unsplash.com/photo-1553342385-111fd6bc6ab3", + }, + { + img: "https://images.unsplash.com/photo-1516546453174-5e1098a4b4af", + }, + { + img: "https://images.unsplash.com/photo-1527142879-95b61a0b8226", + }, + { + img: "https://images.unsplash.com/photo-1520466809213-7b9a56adcd45", + }, + { + img: "https://images.unsplash.com/photo-1516939884455-1445c8652f83", + }, + { + img: "https://images.unsplash.com/photo-1545389336-cf090694435e", + }, + { + img: "https://plus.unsplash.com/premium_photo-1669223469455-b7b734c838f4", + }, + { + img: "https://images.unsplash.com/photo-1454391304352-2bf4678b1a7a", + }, + { + img: "https://images.unsplash.com/photo-1433838552652-f9a46b332c40", + }, + { + img: "https://images.unsplash.com/photo-1506125840744-167167210587", + }, + { + img: "https://images.unsplash.com/photo-1522199873717-bc67b1a5e32b", + }, + { + img: "https://images.unsplash.com/photo-1495904786722-d2b5a19a8535", + }, + { + img: "https://images.unsplash.com/photo-1614094082869-cd4e4b2905c7", + }, + { + img: "https://images.unsplash.com/photo-1474755032398-4b0ed3b2ae5c", + }, + { + img: "https://images.unsplash.com/photo-1501554728187-ce583db33af7", + }, + { + img: "https://images.unsplash.com/photo-1515859005217-8a1f08870f59", + }, + { + img: "https://images.unsplash.com/photo-1531141445733-14c2eb7d4c1f", + }, + { + img: "https://images.unsplash.com/photo-1500259783852-0ca9ce8a64dc", + }, + { + img: "https://images.unsplash.com/photo-1510662145379-13537db782dc", + }, + { + img: "https://images.unsplash.com/photo-1573790387438-4da905039392", + }, + { + img: "https://images.unsplash.com/photo-1512757776214-26d36777b513", + }, + { + img: "https://images.unsplash.com/photo-1518855706573-84de4022b69b", + }, + { + img: "https://images.unsplash.com/photo-1500049242364-5f500807cdd7", + }, + { + img: "https://images.unsplash.com/photo-1528759335187-3b683174c86a", + }, +]; +export const THUMBNAIL_PARAMS = "w=240&h=240&fit=crop&auto=format"; + +// Console styles. +export const CONSOLE_BASE_STYLES = [ + "font-size: 12px", + "padding: 4px", + "border: 2px solid #5a5a5a", + "color: white", +].join(";"); +export const CONSOLE_PRIMARY = [ + CONSOLE_BASE_STYLES, + "background-color: #13315a", +].join(";"); +export const CONSOLE_SUCCESS = [ + CONSOLE_BASE_STYLES, + "background-color: #385a4e", +].join(";"); +export const CONSOLE_ERROR = [ + CONSOLE_BASE_STYLES, + "background-color: #5a1a24", +].join(";"); + +// Layouts. +export const LAYOUT_4_COLUMNS = { + name: "Layout 4 columns", + columns: 4, + itemWidth: 240, + itemHeight: 240, +}; +export const LAYOUT_8_COLUMNS = { + name: "Layout 8 columns", + columns: 8, + itemWidth: 240, + itemHeight: 240, +}; +export const LAYOUTS = [LAYOUT_4_COLUMNS, LAYOUT_8_COLUMNS]; + +export const createImageFile = async (src) => + new Promise((resolve, reject) => { + const img = new Image(); + img.src = src; + img.onload = () => resolve(img); + img.onerror = () => reject(new Error("Failed to construct image.")); + }); + +export const loadImage = async (url) => { + try { + const response = await fetch(url); + if (!response.ok) { + throw new Error(String(response.status)); + } + + return await response.blob(); + } catch (e) { + console.log(`%cFETCHED_FAILED: ${e}`, CONSOLE_ERROR); + } +}; + +export const weakRefCache = (fetchImg) => { + const imgCache = new Map(); + const registry = new FinalizationRegistry(({ imgName, size, type }) => { + const cachedImg = imgCache.get(imgName); + if (cachedImg && !cachedImg.deref()) { + imgCache.delete(imgName); + console.log( + `%cCLEANED_IMAGE: Url: ${imgName}, Size: ${size}, Type: ${type}`, + CONSOLE_ERROR, + ); + + const logEl = document.createElement("div"); + logEl.classList.add("logger-item", "logger--error"); + logEl.innerHTML = `CLEANED_IMAGE: Url: ${imgName}, Size: ${size}, Type: ${type}`; + loggerContainerEl.appendChild(logEl); + loggerContainerEl.scrollTop = loggerContainerEl.scrollHeight; + } + }); + + return async (imgName) => { + const cachedImg = imgCache.get(imgName); + + if (cachedImg?.deref() !== undefined) { + console.log( + `%cCACHED_IMAGE: Url: ${imgName}, Size: ${cachedImg.size}, Type: ${cachedImg.type}`, + CONSOLE_SUCCESS, + ); + + const logEl = document.createElement("div"); + logEl.classList.add("logger-item", "logger--success"); + logEl.innerHTML = `CACHED_IMAGE: Url: ${imgName}, Size: ${cachedImg.size}, Type: ${cachedImg.type}`; + loggerContainerEl.appendChild(logEl); + loggerContainerEl.scrollTop = loggerContainerEl.scrollHeight; + + return cachedImg?.deref(); + } + + const newImg = await fetchImg(imgName); + console.log( + `%cFETCHED_IMAGE: Url: ${imgName}, Size: ${newImg.size}, Type: ${newImg.type}`, + CONSOLE_PRIMARY, + ); + + const logEl = document.createElement("div"); + logEl.classList.add("logger-item", "logger--primary"); + logEl.innerHTML = `FETCHED_IMAGE: Url: ${imgName}, Size: ${newImg.size}, Type: ${newImg.type}`; + loggerContainerEl.appendChild(logEl); + loggerContainerEl.scrollTop = loggerContainerEl.scrollHeight; + + imgCache.set(imgName, new WeakRef(newImg)); + registry.register(newImg, { + imgName, + size: newImg.size, + type: newImg.type, + }); + + return newImg; + }; +}; + +export const stateObj = { + loading: false, + drawing: true, + collageRendered: false, + currentLayout: LAYOUTS[0], + selectedImages: new Set(), +}; diff --git a/2-ui/1-document/01-browser-environment/article.md b/2-ui/1-document/01-browser-environment/article.md index 43dec976a..eedc28fb3 100644 --- a/2-ui/1-document/01-browser-environment/article.md +++ b/2-ui/1-document/01-browser-environment/article.md @@ -1,10 +1,10 @@ # Browser environment, specs -The JavaScript language was initially created for web browsers. Since then it has evolved and become a language with many uses and platforms. +The JavaScript language was initially created for web browsers. Since then, it has evolved into a language with many uses and platforms. -A platform may be a browser, or a web-server or another *host*, even a "smart" coffee machine, if it can run JavaScript. Each of them provides platform-specific functionality. The JavaScript specification calls that a *host environment*. +A platform may be a browser, or a web-server or another *host*, or even a "smart" coffee machine if it can run JavaScript. Each of these provides platform-specific functionality. The JavaScript specification calls that a *host environment*. -A host environment provides own objects and functions additional to the language core. Web browsers give a means to control web pages. Node.js provides server-side features, and so on. +A host environment provides its own objects and functions in addition to the language core. Web browsers give a means to control web pages. Node.js provides server-side features, and so on. Here's a bird's-eye view of what we have when JavaScript runs in a web browser: @@ -15,7 +15,7 @@ There's a "root" object called `window`. It has two roles: 1. First, it is a global object for JavaScript code, as described in the chapter . 2. Second, it represents the "browser window" and provides methods to control it. -For instance, here we use it as a global object: +For instance, we can use it as a global object: ```js run global function sayHi() { @@ -26,17 +26,17 @@ function sayHi() { window.sayHi(); ``` -And here we use it as a browser window, to see the window height: +And we can use it as a browser window, to show the window height: ```js run alert(window.innerHeight); // inner window height ``` -There are more window-specific methods and properties, we'll cover them later. +There are more window-specific methods and properties, which we'll cover later. ## DOM (Document Object Model) -Document Object Model, or DOM for short, represents all page content as objects that can be modified. +The Document Object Model, or DOM for short, represents all page content as objects that can be modified. The `document` object is the main "entry point" to the page. We can change or create anything on the page using it. @@ -49,18 +49,18 @@ document.body.style.background = "red"; setTimeout(() => document.body.style.background = "", 1000); ``` -Here we used `document.body.style`, but there's much, much more. Properties and methods are described in the specification: [DOM Living Standard](https://dom.spec.whatwg.org). +Here, we used `document.body.style`, but there's much, much more. Properties and methods are described in the specification: [DOM Living Standard](https://dom.spec.whatwg.org). ```smart header="DOM is not only for browsers" The DOM specification explains the structure of a document and provides objects to manipulate it. There are non-browser instruments that use DOM too. -For instance, server-side scripts that download HTML pages and process them can also use DOM. They may support only a part of the specification though. +For instance, server-side scripts that download HTML pages and process them can also use the DOM. They may support only a part of the specification though. ``` ```smart header="CSSOM for styling" There's also a separate specification, [CSS Object Model (CSSOM)](https://www.w3.org/TR/cssom-1/) for CSS rules and stylesheets, that explains how they are represented as objects, and how to read and write them. -CSSOM is used together with DOM when we modify style rules for the document. In practice though, CSSOM is rarely required, because we rarely need to modify CSS rules from JavaScript (usually we just add/remove CSS classes, not modify their CSS rules), but that's also possible. +The CSSOM is used together with the DOM when we modify style rules for the document. In practice though, the CSSOM is rarely required, because we rarely need to modify CSS rules from JavaScript (usually we just add/remove CSS classes, not modify their CSS rules), but that's also possible. ``` ## BOM (Browser Object Model) @@ -69,7 +69,7 @@ The Browser Object Model (BOM) represents additional objects provided by the bro For instance: -- The [navigator](mdn:api/Window/navigator) object provides background information about the browser and the operating system. There are many properties, but the two most widely known are: `navigator.userAgent` -- about the current browser, and `navigator.platform` -- about the platform (can help to differ between Windows/Linux/Mac etc). +- The [navigator](mdn:api/Window/navigator) object provides background information about the browser and the operating system. There are many properties, but the two most widely known are: `navigator.userAgent` -- about the current browser, and `navigator.platform` -- about the platform (can help to differentiate between Windows/Linux/Mac etc). - The [location](mdn:api/Window/location) object allows us to read the current URL and can redirect the browser to a new one. Here's how we can use the `location` object: @@ -81,12 +81,12 @@ if (confirm("Go to Wikipedia?")) { } ``` -Functions `alert/confirm/prompt` are also a part of BOM: they are directly not related to the document, but represent pure browser methods of communicating with the user. +The functions `alert/confirm/prompt` are also a part of the BOM: they are not directly related to the document, but represent pure browser methods for communicating with the user. ```smart header="Specifications" -BOM is the part of the general [HTML specification](https://html.spec.whatwg.org). +The BOM is a part of the general [HTML specification](https://html.spec.whatwg.org). -Yes, you heard that right. The HTML spec at is not only about the "HTML language" (tags, attributes), but also covers a bunch of objects, methods and browser-specific DOM extensions. That's "HTML in broad terms". Also, some parts have additional specs listed at . +Yes, you heard that right. The HTML spec at is not only about the "HTML language" (tags, attributes), but also covers a bunch of objects, methods, and browser-specific DOM extensions. That's "HTML in broad terms". Also, some parts have additional specs listed at . ``` ## Summary @@ -94,20 +94,20 @@ Yes, you heard that right. The HTML spec at is no Talking about standards, we have: DOM specification -: Describes the document structure, manipulations and events, see . +: Describes the document structure, manipulations, and events, see . CSSOM specification -: Describes stylesheets and style rules, manipulations with them and their binding to documents, see . +: Describes stylesheets and style rules, manipulations with them, and their binding to documents, see . HTML specification : Describes the HTML language (e.g. tags) and also the BOM (browser object model) -- various browser functions: `setTimeout`, `alert`, `location` and so on, see . It takes the DOM specification and extends it with many additional properties and methods. Additionally, some classes are described separately at . -Please note these links, as there's so much stuff to learn it's impossible to cover and remember everything. +Please note these links, as there's so much to learn that it's impossible to cover everything and remember it all. -When you'd like to read about a property or a method, the Mozilla manual at is also a nice resource, but the corresponding spec may be better: it's more complex and longer to read, but will make your fundamental knowledge sound and complete. +When you'd like to read about a property or a method, the Mozilla manual at is also a nice resource, but the corresponding spec may be better: it's more complex and longer to read, but will make your fundamental knowledge sound and complete. To find something, it's often convenient to use an internet search "WHATWG [term]" or "MDN [term]", e.g , . -Now we'll get down to learning DOM, because the document plays the central role in the UI. +Now, we'll get down to learning the DOM, because the document plays the central role in the UI. diff --git a/2-ui/1-document/02-dom-nodes/article.md b/2-ui/1-document/02-dom-nodes/article.md index e18335f38..f7f2be91d 100644 --- a/2-ui/1-document/02-dom-nodes/article.md +++ b/2-ui/1-document/02-dom-nodes/article.md @@ -212,7 +212,7 @@ There are [12 node types](https://dom.spec.whatwg.org/#node). In practice we usu ## See it for yourself -To see the DOM structure in real-time, try [Live DOM Viewer](http://software.hixie.ch/utilities/js/live-dom-viewer/). Just type in the document, and it will show up as a DOM at an instant. +To see the DOM structure in real-time, try [Live DOM Viewer](https://software.hixie.ch/utilities/js/live-dom-viewer/). Just type in the document, and it will show up as a DOM at an instant. Another way to explore the DOM is to use the browser developer tools. Actually, that's what we use when developing. diff --git a/2-ui/1-document/02-dom-nodes/domconsole0.svg b/2-ui/1-document/02-dom-nodes/domconsole0.svg index ea0d9141c..eb99f193f 100644 --- a/2-ui/1-document/02-dom-nodes/domconsole0.svg +++ b/2-ui/1-document/02-dom-nodes/domconsole0.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/domconsole1.svg b/2-ui/1-document/02-dom-nodes/domconsole1.svg index d7f32debb..02ef5f0a6 100644 --- a/2-ui/1-document/02-dom-nodes/domconsole1.svg +++ b/2-ui/1-document/02-dom-nodes/domconsole1.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/elk.svg b/2-ui/1-document/02-dom-nodes/elk.svg index 1797a099f..448eea9d1 100644 --- a/2-ui/1-document/02-dom-nodes/elk.svg +++ b/2-ui/1-document/02-dom-nodes/elk.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/inspect.svg b/2-ui/1-document/02-dom-nodes/inspect.svg index a894a5c0e..60696ec0d 100644 --- a/2-ui/1-document/02-dom-nodes/inspect.svg +++ b/2-ui/1-document/02-dom-nodes/inspect.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/04-searching-elements-dom/article.md b/2-ui/1-document/04-searching-elements-dom/article.md index 735ae4c8a..405129694 100644 --- a/2-ui/1-document/04-searching-elements-dom/article.md +++ b/2-ui/1-document/04-searching-elements-dom/article.md @@ -55,7 +55,7 @@ Also, there's a global variable named by `id` that references the element: ``` ```warn header="Please don't use id-named global variables to access elements" -This behavior is described [in the specification](http://www.whatwg.org/specs/web-apps/current-work/#dom-window-nameditem), so it's a kind of standard. But it is supported mainly for compatibility. +This behavior is described [in the specification](https://html.spec.whatwg.org/multipage/window-object.html#named-access-on-the-window-object), but it is supported mainly for compatibility. The browser tries to help us by mixing namespaces of JS and DOM. That's fine for simple scripts, inlined into HTML, but generally isn't a good thing. There may be naming conflicts. Also, when one reads JS code and doesn't have HTML in view, it's not obvious where the variable comes from. @@ -116,7 +116,7 @@ In other words, the result is the same as `elem.querySelectorAll(css)[0]`, but t Previous methods were searching the DOM. -The [elem.matches(css)](http://dom.spec.whatwg.org/#dom-element-matches) does not look for anything, it merely checks if `elem` matches the given CSS-selector. It returns `true` or `false`. +The [elem.matches(css)](https://dom.spec.whatwg.org/#dom-element-matches) does not look for anything, it merely checks if `elem` matches the given CSS-selector. It returns `true` or `false`. The method comes in handy when we are iterating over elements (like in an array or something) and trying to filter out those that interest us. diff --git a/2-ui/1-document/05-basic-dom-node-properties/article.md b/2-ui/1-document/05-basic-dom-node-properties/article.md index b1d6486f4..99dde5bcd 100644 --- a/2-ui/1-document/05-basic-dom-node-properties/article.md +++ b/2-ui/1-document/05-basic-dom-node-properties/article.md @@ -10,7 +10,7 @@ Different DOM nodes may have different properties. For instance, an element node Each DOM node belongs to the corresponding built-in class. -The root of the hierarchy is [EventTarget](https://dom.spec.whatwg.org/#eventtarget), that is inherited by [Node](http://dom.spec.whatwg.org/#interface-node), and other DOM nodes inherit from it. +The root of the hierarchy is [EventTarget](https://dom.spec.whatwg.org/#eventtarget), that is inherited by [Node](https://dom.spec.whatwg.org/#interface-node), and other DOM nodes inherit from it. Here's the picture, explanations to follow: @@ -18,10 +18,31 @@ Here's the picture, explanations to follow: The classes are: -- [EventTarget](https://dom.spec.whatwg.org/#eventtarget) -- is the root "abstract" class. Objects of that class are never created. It serves as a base, so that all DOM nodes support so-called "events", we'll study them later. -- [Node](http://dom.spec.whatwg.org/#interface-node) -- is also an "abstract" class, serving as a base for DOM nodes. It provides the core tree functionality: `parentNode`, `nextSibling`, `childNodes` and so on (they are getters). Objects of `Node` class are never created. But there are concrete node classes that inherit from it, namely: `Text` for text nodes, `Element` for element nodes and more exotic ones like `Comment` for comment nodes. -- [Element](http://dom.spec.whatwg.org/#interface-element) -- is a base class for DOM elements. It provides element-level navigation like `nextElementSibling`, `children` and searching methods like `getElementsByTagName`, `querySelector`. A browser supports not only HTML, but also XML and SVG. The `Element` class serves as a base for more specific classes: `SVGElement`, `XMLElement` and `HTMLElement`. -- [HTMLElement](https://html.spec.whatwg.org/multipage/dom.html#htmlelement) -- is finally the basic class for all HTML elements. It is inherited by concrete HTML elements: +- [EventTarget](https://dom.spec.whatwg.org/#eventtarget) -- is the root "abstract" class for everything. + + Objects of that class are never created. It serves as a base, so that all DOM nodes support so-called "events", we'll study them later. + +- [Node](https://dom.spec.whatwg.org/#interface-node) -- is also an "abstract" class, serving as a base for DOM nodes. + + It provides the core tree functionality: `parentNode`, `nextSibling`, `childNodes` and so on (they are getters). Objects of `Node` class are never created. But there are other classes that inherit from it (and so inherit the `Node` functionality). + +- [Document](https://dom.spec.whatwg.org/#interface-document), for historical reasons often inherited by `HTMLDocument` (though the latest spec doesn't dictate it) -- is a document as a whole. + + The `document` global object belongs exactly to this class. It serves as an entry point to the DOM. + +- [CharacterData](https://dom.spec.whatwg.org/#interface-characterdata) -- an "abstract" class, inherited by: + - [Text](https://dom.spec.whatwg.org/#interface-text) -- the class corresponding to a text inside elements, e.g. `Hello` in `

Hello

`. + - [Comment](https://dom.spec.whatwg.org/#interface-comment) -- the class for comments. They are not shown, but each comment becomes a member of DOM. + +- [Element](https://dom.spec.whatwg.org/#interface-element) -- is the base class for DOM elements. + + It provides element-level navigation like `nextElementSibling`, `children` and searching methods like `getElementsByTagName`, `querySelector`. + + A browser supports not only HTML, but also XML and SVG. So the `Element` class serves as a base for more specific classes: `SVGElement`, `XMLElement` (we don't need them here) and `HTMLElement`. + +- Finally, [HTMLElement](https://html.spec.whatwg.org/multipage/dom.html#htmlelement) is the basic class for all HTML elements. We'll work with it most of the time. + + It is inherited by concrete HTML elements: - [HTMLInputElement](https://html.spec.whatwg.org/multipage/forms.html#htmlinputelement) -- the class for `` elements, - [HTMLBodyElement](https://html.spec.whatwg.org/multipage/semantics.html#htmlbodyelement) -- the class for `` elements, - [HTMLAnchorElement](https://html.spec.whatwg.org/multipage/semantics.html#htmlanchorelement) -- the class for `` elements, @@ -29,7 +50,7 @@ The classes are: There are many other tags with their own classes that may have specific properties and methods, while some elements, such as ``, `
`, `
` do not have any specific properties, so they are instances of `HTMLElement` class. -So, the full set of properties and methods of a given node comes as the result of the inheritance. +So, the full set of properties and methods of a given node comes as the result of the chain of inheritance. For example, let's consider the DOM object for an `` element. It belongs to [HTMLInputElement](https://html.spec.whatwg.org/multipage/forms.html#htmlinputelement) class. @@ -133,10 +154,10 @@ For instance: ``` -But there are exclusions, for instance `input.value` synchronizes only from attribute -> to property, but not back: +But there are exclusions, for instance `input.value` synchronizes only from attribute -> property, but not back: ```html run diff --git a/2-ui/1-document/07-modifying-document/5-why-aaa/task.md b/2-ui/1-document/07-modifying-document/5-why-aaa/task.md index f87074dba..861f70503 100644 --- a/2-ui/1-document/07-modifying-document/5-why-aaa/task.md +++ b/2-ui/1-document/07-modifying-document/5-why-aaa/task.md @@ -22,6 +22,6 @@ Why does that happen? alert(table); // the table, as it should be table.remove(); - // why there's still aaa in the document? + // why there's still "aaa" in the document? ``` diff --git a/2-ui/1-document/08-styles-and-classes/article.md b/2-ui/1-document/08-styles-and-classes/article.md index 9154d43d6..46aaa3b00 100644 --- a/2-ui/1-document/08-styles-and-classes/article.md +++ b/2-ui/1-document/08-styles-and-classes/article.md @@ -128,6 +128,14 @@ setTimeout(() => document.body.style.display = "", 1000); // back to normal If we set `style.display` to an empty string, then the browser applies CSS classes and its built-in styles normally, as if there were no such `style.display` property at all. +Also there is a special method for that, `elem.style.removeProperty('style property')`. So, We can remove a property like this: + +```js run +document.body.style.background = 'red'; //set background to red + +setTimeout(() => document.body.style.removeProperty('background'), 1000); // remove background after 1 second +``` + ````smart header="Full rewrite with `style.cssText`" Normally, we use `style.*` to assign individual style properties. We can't set the full style like `div.style="color: red; width: 100px"`, because `div.style` is an object, and it's read-only. @@ -261,20 +269,6 @@ So nowadays `getComputedStyle` actually returns the resolved value of the proper We should always ask for the exact property that we want, like `paddingLeft` or `marginTop` or `borderTopWidth`. Otherwise the correct result is not guaranteed. For instance, if there are properties `paddingLeft/paddingTop`, then what should we get for `getComputedStyle(elem).padding`? Nothing, or maybe a "generated" value from known paddings? There's no standard rule here. - -There are other inconsistencies. As an example, some browsers (Chrome) show `10px` in the document below, and some of them (Firefox) -- do not: - -```html run - - -``` ```` ```smart header="Styles applied to `:visited` links are hidden!" diff --git a/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg b/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg index 4ae90b1c7..f5bd9f4f9 100644 --- a/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg +++ b/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg @@ -1 +1 @@ -(0,0)clientWidth \ No newline at end of file +(0,0)clientWidth \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-all.svg b/2-ui/1-document/09-size-and-scroll/metric-all.svg index a5dadb47f..20a59e18d 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-all.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-all.svg @@ -1 +1 @@ -Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeightoffsetHeightscrollTopclientHeightoffsetTopclientLeftclientWidthclientTopoffsetLeftoffsetWidth \ No newline at end of file +Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeightoffsetHeightscrollTopclientHeightoffsetTopclientLeftclientWidthclientTopoffsetLeftoffsetWidth \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg b/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg index 83864b4c5..2603b05fb 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg @@ -1 +1 @@ -border 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxclientWidth = 20+284+20 = 324pxclientHeight: 240pxheight: 200pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file +border 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxclientWidth = 20+284+20 = 324pxclientHeight: 240pxheight: 200pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-css.svg b/2-ui/1-document/09-size-and-scroll/metric-css.svg index 13aa62afd..1f2e5f780 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-css.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-css.svg @@ -1 +1 @@ -padding: 20pxheight: 200pxpadding: 20pxborder 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file +padding: 20pxheight: 200pxpadding: 20pxborder 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg b/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg index 9e247639b..2d108473e 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg @@ -1 +1 @@ -offsetTop: 180pxoffsetLeft: 180pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoftposition: absolute; left: 180px; top: 180px;offsetParent <MAIN> <DIV> \ No newline at end of file +offsetTop: 180pxoffsetLeft: 180pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoftposition: absolute; left: 180px; top: 180px;offsetParent <MAIN> <DIV> \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg b/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg index 49bdccda7..4d30d90cc 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg @@ -1 +1 @@ -border 25pxpadding 20pxcontent width: 284pxheight: 200pxborder 25pxpadding 20pxscrollbar 16pxoffsetWidth = 25+20+284+20+16+25 = 390pxoffsetHeight: 290pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file +border 25pxpadding 20pxcontent width: 284pxheight: 200pxborder 25pxpadding 20pxscrollbar 16pxoffsetWidth = 25+20+284+20+16+25 = 390pxoffsetHeight: 290pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg b/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg index c6d14d0f3..7f72de422 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg @@ -1 +1 @@ -Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollTopscrollHeight: 723px \ No newline at end of file +Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollTopscrollHeight: 723px \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg b/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg index 0c3d29952..75a24e3bc 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg @@ -1 +1 @@ -Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeight: 723pxscrollWidth = 324px \ No newline at end of file +Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeight: 723pxscrollWidth = 324px \ No newline at end of file diff --git a/2-ui/1-document/11-coordinates/article.md b/2-ui/1-document/11-coordinates/article.md index 4775ff0eb..fc605c414 100644 --- a/2-ui/1-document/11-coordinates/article.md +++ b/2-ui/1-document/11-coordinates/article.md @@ -36,7 +36,7 @@ Additionally, there are derived properties: ```online For instance click this button to see its window coordinates: -

+

``` @@ -265,7 +265,7 @@ Here's a document with ` - + diff --git a/2-ui/5-loading/01-onload-ondomcontentloaded/readystate.view/index.html b/2-ui/5-loading/01-onload-ondomcontentloaded/readystate.view/index.html index a4685a716..27df70939 100644 --- a/2-ui/5-loading/01-onload-ondomcontentloaded/readystate.view/index.html +++ b/2-ui/5-loading/01-onload-ondomcontentloaded/readystate.view/index.html @@ -9,8 +9,8 @@ [20] readyState:interactive [21] DOMContentLoaded [30] iframe onload - [40] readyState:complete [40] img onload + [40] readyState:complete [40] window onload --> diff --git a/2-ui/99-ui-misc/02-selection-range/article.md b/2-ui/99-ui-misc/02-selection-range/article.md index c5ab3fbdd..09a20bc67 100644 --- a/2-ui/99-ui-misc/02-selection-range/article.md +++ b/2-ui/99-ui-misc/02-selection-range/article.md @@ -217,7 +217,7 @@ The range object that we created in the example above has following properties: ## Range selection methods -There are many convenience methods to manipulate ranges. +There are many convenient methods to manipulate ranges. We've already seen `setStart` and `setEnd`, here are other similar methods. @@ -354,7 +354,7 @@ The main selection properties are: ```smart header="Selection end/start vs Range" -There's an important differences of a selection anchor/focus compared with a `Range` start/end. +There's an important difference between a selection anchor/focus compared with a `Range` start/end. As we know, `Range` objects always have their start before the end. @@ -408,7 +408,7 @@ From – To There are two approaches to copying the selected content: 1. We can use `document.getSelection().toString()` to get it as text. -2. Otherwise, to copy the full DOM, e.g. if we need to keep formatting, we can get the underlying ranges with `getRangesAt(...)`. A `Range` object, in turn, has `cloneContents()` method that clones its content and returns as `DocumentFragment` object, that we can insert elsewhere. +2. Otherwise, to copy the full DOM, e.g. if we need to keep formatting, we can get the underlying ranges with `getRangeAt(...)`. A `Range` object, in turn, has `cloneContents()` method that clones its content and returns as `DocumentFragment` object, that we can insert elsewhere. Here's the demo of copying the selected content both as text and as DOM nodes: @@ -438,7 +438,7 @@ As text: ## Selection methods -We can work with the selection by addding/removing ranges: +We can work with the selection by adding/removing ranges: - `getRangeAt(i)` -- get i-th range, starting from `0`. In all browsers except Firefox, only `0` is used. - `addRange(range)` -- add `range` to selection. All browsers except Firefox ignore the call, if the selection already has an associated range. diff --git a/2-ui/99-ui-misc/02-selection-range/range-example-p-0-1.svg b/2-ui/99-ui-misc/02-selection-range/range-example-p-0-1.svg index 9ebcffaac..a97d1b47a 100644 --- a/2-ui/99-ui-misc/02-selection-range/range-example-p-0-1.svg +++ b/2-ui/99-ui-misc/02-selection-range/range-example-p-0-1.svg @@ -1 +1 @@ -0123 \ No newline at end of file +0123 \ No newline at end of file diff --git a/2-ui/99-ui-misc/02-selection-range/range-example-p-1-3.svg b/2-ui/99-ui-misc/02-selection-range/range-example-p-1-3.svg index 088c71c20..2a8f9aca3 100644 --- a/2-ui/99-ui-misc/02-selection-range/range-example-p-1-3.svg +++ b/2-ui/99-ui-misc/02-selection-range/range-example-p-1-3.svg @@ -1 +1 @@ -0123 \ No newline at end of file +0123 \ No newline at end of file diff --git a/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3-range.svg b/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3-range.svg index f13c6d74a..32843436d 100644 --- a/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3-range.svg +++ b/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3-range.svg @@ -1 +1 @@ -startContainer (<p>.firstChild)startOffset (=2)commonAncestorContainer (<p>)endContainer (<b>.firstChild)endOffset (=3) \ No newline at end of file +startContainer (<p>.firstChild)startOffset (=2)commonAncestorContainer (<p>)endContainer (<b>.firstChild)endOffset (=3) \ No newline at end of file diff --git a/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3.svg b/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3.svg index 4bf5b00b0..859f755ce 100644 --- a/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3.svg +++ b/2-ui/99-ui-misc/02-selection-range/range-example-p-2-b-3.svg @@ -1 +1 @@ -0123 \ No newline at end of file +0123 \ No newline at end of file diff --git a/2-ui/99-ui-misc/02-selection-range/selection-direction-backward.svg b/2-ui/99-ui-misc/02-selection-range/selection-direction-backward.svg index 6399f9d5e..85615d38f 100644 --- a/2-ui/99-ui-misc/02-selection-range/selection-direction-backward.svg +++ b/2-ui/99-ui-misc/02-selection-range/selection-direction-backward.svg @@ -1 +1 @@ -focusanchormouse move direction \ No newline at end of file +focusanchormouse move direction \ No newline at end of file diff --git a/2-ui/99-ui-misc/02-selection-range/selection-direction-forward.svg b/2-ui/99-ui-misc/02-selection-range/selection-direction-forward.svg index 03c6fc5c6..511b00a26 100644 --- a/2-ui/99-ui-misc/02-selection-range/selection-direction-forward.svg +++ b/2-ui/99-ui-misc/02-selection-range/selection-direction-forward.svg @@ -1 +1 @@ -anchorfocusmouse move direction \ No newline at end of file +anchorfocusmouse move direction \ No newline at end of file diff --git a/2-ui/99-ui-misc/02-selection-range/selection-firefox.svg b/2-ui/99-ui-misc/02-selection-range/selection-firefox.svg index 050852d3d..aa7ff1eb7 100644 --- a/2-ui/99-ui-misc/02-selection-range/selection-firefox.svg +++ b/2-ui/99-ui-misc/02-selection-range/selection-firefox.svg @@ -1 +1 @@ -selection \ No newline at end of file +selection \ No newline at end of file diff --git a/2-ui/99-ui-misc/03-event-loop/2-micro-macro-queue/solution.md b/2-ui/99-ui-misc/03-event-loop/2-micro-macro-queue/solution.md index 3a0daa974..2911b76cf 100644 --- a/2-ui/99-ui-misc/03-event-loop/2-micro-macro-queue/solution.md +++ b/2-ui/99-ui-misc/03-event-loop/2-micro-macro-queue/solution.md @@ -40,10 +40,10 @@ console.log(7); To summarize, -1. Numbers `1` и `7` show up immediately, because simple `console.log` calls don't use any queues. +1. Numbers `1` and `7` show up immediately, because simple `console.log` calls don't use any queues. 2. Then, after the main code flow is finished, the microtask queue runs. - It has commands: `console.log(3); setTimeout(...4); console.log(5)`. - - Numbers `3` и `5` show up, while `setTimeout(() => console.log(4))` adds the `console.log(4)` call to the end of the macrotask queue. + - Numbers `3` and `5` show up, while `setTimeout(() => console.log(4))` adds the `console.log(4)` call to the end of the macrotask queue. - The macrotask queue is now: `console.log(2); console.log(6); console.log(4)`. 3. After the microtask queue becomes empty, the macrotask queue executes. It outputs `2`, `6`, `4`. diff --git a/2-ui/99-ui-misc/03-event-loop/article.md b/2-ui/99-ui-misc/03-event-loop/article.md index 3ea0c2c57..f33188491 100644 --- a/2-ui/99-ui-misc/03-event-loop/article.md +++ b/2-ui/99-ui-misc/03-event-loop/article.md @@ -17,7 +17,7 @@ The general algorithm of the engine: - execute them, starting with the oldest task. 2. Sleep until a task appears, then go to 1. -That's a formalization for what we see when browsing a page. The JavaScript engine does nothing most of the time, it only runs if a script/handler/event activates. +That's a formalization of what we see when browsing a page. The JavaScript engine does nothing most of the time, it only runs if a script/handler/event activates. Examples of tasks: @@ -30,19 +30,19 @@ Tasks are set -- the engine handles them -- then waits for more tasks (while sle It may happen that a task comes while the engine is busy, then it's enqueued. -The tasks form a queue, so-called "macrotask queue" (v8 term): +The tasks form a queue, the so-called "macrotask queue" ([v8](https://v8.dev/) term): ![](eventLoop.svg) -For instance, while the engine is busy executing a `script`, a user may move their mouse causing `mousemove`, and `setTimeout` may be due and so on, these tasks form a queue, as illustrated on the picture above. +For instance, while the engine is busy executing a `script`, a user may move their mouse causing `mousemove`, and `setTimeout` may be due and so on, these tasks form a queue, as illustrated in the picture above. -Tasks from the queue are processed on "first come – first served" basis. When the engine browser is done with the `script`, it handles `mousemove` event, then `setTimeout` handler, and so on. +Tasks from the queue are processed on a "first come – first served" basis. When the engine browser is done with the `script`, it handles `mousemove` event, then `setTimeout` handler, and so on. So far, quite simple, right? Two more details: 1. Rendering never happens while the engine executes a task. It doesn't matter if the task takes a long time. Changes to the DOM are painted only after the task is complete. -2. If a task takes too long, the browser can't do other tasks, such as processing user events. So after a time, it raises an alert like "Page Unresponsive", suggesting killing the task with the whole page. That happens when there are a lot of complex calculations or a programming error leading to an infinite loop. +2. If a task takes too long, the browser can't do other tasks, such as processing user events. So after some time, it raises an alert like "Page Unresponsive", suggesting killing the task with the whole page. That happens when there are a lot of complex calculations or a programming error leading to an infinite loop. That was the theory. Now let's see how we can apply that knowledge. @@ -54,7 +54,7 @@ For example, syntax-highlighting (used to colorize code examples on this page) i While the engine is busy with syntax highlighting, it can't do other DOM-related stuff, process user events, etc. It may even cause the browser to "hiccup" or even "hang" for a bit, which is unacceptable. -We can avoid problems by splitting the big task into pieces. Highlight first 100 lines, then schedule `setTimeout` (with zero-delay) for the next 100 lines, and so on. +We can avoid problems by splitting the big task into pieces. Highlight the first 100 lines, then schedule `setTimeout` (with zero-delay) for the next 100 lines, and so on. To demonstrate this approach, for the sake of simplicity, instead of text-highlighting, let's take a function that counts from `1` to `1000000000`. diff --git a/3-frames-and-windows/01-popup-windows/article.md b/3-frames-and-windows/01-popup-windows/article.md index 01da2b304..f2c87d1e0 100644 --- a/3-frames-and-windows/01-popup-windows/article.md +++ b/3-frames-and-windows/01-popup-windows/article.md @@ -38,26 +38,6 @@ button.onclick = () => { This way users are somewhat protected from unwanted popups, but the functionality is not disabled totally. -What if the popup opens from `onclick`, but after `setTimeout`? That's a bit tricky. - -Try this code: - -```js run -// open after 3 seconds -setTimeout(() => window.open('http://google.com'), 3000); -``` - -The popup opens in Chrome, but gets blocked in Firefox. - -...If we decrease the delay, the popup works in Firefox too: - -```js run -// open after 1 seconds -setTimeout(() => window.open('http://google.com'), 1000); -``` - -The difference is that Firefox treats a timeout of 2000ms or less are acceptable, but after it -- removes the "trust", assuming that now it's "outside of the user action". So the first one is blocked, and the second one is not. - ## window.open The syntax to open a popup is: `window.open(url, name, params)`: diff --git a/3-frames-and-windows/06-clickjacking/article.md b/3-frames-and-windows/06-clickjacking/article.md index 1daa87dd0..34d0a91ae 100644 --- a/3-frames-and-windows/06-clickjacking/article.md +++ b/3-frames-and-windows/06-clickjacking/article.md @@ -154,7 +154,7 @@ Depending on your browser, the `iframe` above is either empty or alerting you th ## Showing with disabled functionality -The `X-Frame-Options` header has a side-effect. Other sites won't be able to show our page in a frame, even if they have good reasons to do so. +The `X-Frame-Options` header has a side effect. Other sites won't be able to show our page in a frame, even if they have good reasons to do so. So there are other solutions... For instance, we can "cover" the page with a `
` with styles `height: 100%; width: 100%;`, so that it will intercept all clicks. That `
` is to be removed if `window == top` or if we figure out that we don't need the protection. diff --git a/4-binary/01-arraybuffer-binary-arrays/article.md b/4-binary/01-arraybuffer-binary-arrays/article.md index baec993bf..2827e277e 100644 --- a/4-binary/01-arraybuffer-binary-arrays/article.md +++ b/4-binary/01-arraybuffer-binary-arrays/article.md @@ -71,7 +71,7 @@ for(let num of view) { ## TypedArray -The common term for all these views (`Uint8Array`, `Uint32Array`, etc) is [TypedArray](https://tc39.github.io/ecma262/#sec-typedarray-objects). They share the same set of methods and properities. +The common term for all these views (`Uint8Array`, `Uint32Array`, etc) is [TypedArray](https://tc39.github.io/ecma262/#sec-typedarray-objects). They share the same set of methods and properties. Please note, there's no constructor called `TypedArray`, it's just a common "umbrella" term to represent one of views over `ArrayBuffer`: `Int8Array`, `Uint8Array` and so on, the full list will soon follow. diff --git a/4-binary/03-blob/article.md b/4-binary/03-blob/article.md index e3bd32b38..fc0150577 100644 --- a/4-binary/03-blob/article.md +++ b/4-binary/03-blob/article.md @@ -101,7 +101,7 @@ For each URL generated by `URL.createObjectURL` the browser stores a URL -> `Blo A generated URL (and hence the link with it) is only valid within the current document, while it's open. And it allows to reference the `Blob` in ``, ``, basically any other object that expects a URL. -There's a side-effect though. While there's a mapping for a `Blob`, the `Blob` itself resides in the memory. The browser can't free it. +There's a side effect though. While there's a mapping for a `Blob`, the `Blob` itself resides in the memory. The browser can't free it. The mapping is automatically cleared on document unload, so `Blob` objects are freed then. But if an app is long-living, then that doesn't happen soon. @@ -237,8 +237,8 @@ const readableStream = blob.stream(); const stream = readableStream.getReader(); while (true) { - // for each iteration: data is the next blob fragment - let { done, data } = await stream.read(); + // for each iteration: value is the next blob fragment + let { done, value } = await stream.read(); if (done) { // no more data in the stream console.log('all blob processed.'); @@ -246,7 +246,7 @@ while (true) { } // do something with the data portion we've just read from the blob - console.log(data); + console.log(value); } ``` diff --git a/5-network/05-fetch-crossorigin/article.md b/5-network/05-fetch-crossorigin/article.md index d45ee391d..4420f43c7 100644 --- a/5-network/05-fetch-crossorigin/article.md +++ b/5-network/05-fetch-crossorigin/article.md @@ -44,7 +44,7 @@ One way to communicate with another server was to submit a `
` there. Peopl */!* - + *!* */!* @@ -169,6 +169,7 @@ For cross-origin request, by default JavaScript may only access so-called "safe" - `Cache-Control` - `Content-Language` +- `Content-Length` - `Content-Type` - `Expires` - `Last-Modified` @@ -176,12 +177,6 @@ For cross-origin request, by default JavaScript may only access so-called "safe" Accessing any other response header causes an error. -```smart -There's no `Content-Length` header in the list! - -This header contains the full response length. So, if we're downloading something and would like to track the percentage of progress, then an additional permission is required to access that header (see below). -``` - To grant JavaScript access to any other response header, the server must send the `Access-Control-Expose-Headers` header. It contains a comma-separated list of unsafe header names that should be made accessible. For example: @@ -190,14 +185,15 @@ For example: 200 OK Content-Type:text/html; charset=UTF-8 Content-Length: 12345 +Content-Encoding: gzip API-Key: 2c9de507f2c54aa1 Access-Control-Allow-Origin: https://javascript.info *!* -Access-Control-Expose-Headers: Content-Length,API-Key +Access-Control-Expose-Headers: Content-Encoding,API-Key */!* ``` -With such an `Access-Control-Expose-Headers` header, the script is allowed to read the `Content-Length` and `API-Key` headers of the response. +With such an `Access-Control-Expose-Headers` header, the script is allowed to read the `Content-Encoding` and `API-Key` headers of the response. ## "Unsafe" requests diff --git a/5-network/06-fetch-api/article.md b/5-network/06-fetch-api/article.md index 35efd8cf3..5f55c78ef 100644 --- a/5-network/06-fetch-api/article.md +++ b/5-network/06-fetch-api/article.md @@ -21,10 +21,10 @@ let promise = fetch(url, { // depending on the request body "Content-Type": "text/plain;charset=UTF-8" }, - body: undefined // string, FormData, Blob, BufferSource, or URLSearchParams + body: undefined, // string, FormData, Blob, BufferSource, or URLSearchParams referrer: "about:client", // or "" to send no Referer header, // or an url from the current origin - referrerPolicy: "no-referrer-when-downgrade", // no-referrer, origin, same-origin... + referrerPolicy: "strict-origin-when-cross-origin", // no-referrer-when-downgrade, no-referrer, origin, same-origin... mode: "cors", // same-origin, no-cors credentials: "same-origin", // omit, include cache: "default", // no-store, reload, no-cache, force-cache, or only-if-cached @@ -52,7 +52,7 @@ Usually that header is set automatically and contains the url of the page that m **The `referrer` option allows to set any `Referer` (within the current origin) or remove it.** -To send no referer, set an empty string: +To send no referrer, set an empty string: ```js fetch('/page', { *!* @@ -85,13 +85,13 @@ Unlike the `referrer` option that allows to set the exact `Referer` value, `refe Possible values are described in the [Referrer Policy specification](https://w3c.github.io/webappsec-referrer-policy/): -- **`"no-referrer-when-downgrade"`** -- the default value: full `Referer` is always sent, unless we send a request from HTTPS to HTTP (to the less secure protocol). +- **`"strict-origin-when-cross-origin"`** -- the default value: for same-origin send the full `Referer`, for cross-origin send only the origin, unless it's HTTPS→HTTP request, then send nothing. +- **`"no-referrer-when-downgrade"`** -- full `Referer` is always sent, unless we send a request from HTTPS to HTTP (to the less secure protocol). - **`"no-referrer"`** -- never send `Referer`. - **`"origin"`** -- only send the origin in `Referer`, not the full page URL, e.g. only `http://site.com` instead of `http://site.com/path`. - **`"origin-when-cross-origin"`** -- send the full `Referer` to the same origin, but only the origin part for cross-origin requests (as above). - **`"same-origin"`** -- send the full `Referer` to the same origin, but no `Referer` for cross-origin requests. - **`"strict-origin"`** -- send only the origin, not the `Referer` for HTTPS→HTTP requests. -- **`"strict-origin-when-cross-origin"`** -- for same-origin send the full `Referer`, for cross-origin send only the origin, unless it's HTTPS→HTTP request, then send nothing. - **`"unsafe-url"`** -- always send the full url in `Referer`, even for HTTPS→HTTP requests. Here's a table with all combinations: @@ -99,12 +99,12 @@ Here's a table with all combinations: | Value | To same origin | To another origin | HTTPS→HTTP | |-------|----------------|-------------------|------------| | `"no-referrer"` | - | - | - | -| `"no-referrer-when-downgrade"` or `""` (default) | full | full | - | +| `"no-referrer-when-downgrade"` | full | full | - | | `"origin"` | origin | origin | origin | | `"origin-when-cross-origin"` | full | origin | origin | | `"same-origin"` | full | - | - | | `"strict-origin"` | origin | origin | - | -| `"strict-origin-when-cross-origin"` | full | origin | - | +| `"strict-origin-when-cross-origin"` or `""` (default) | full | origin | - | | `"unsafe-url"` | full | full | full | Let's say we have an admin zone with a URL structure that shouldn't be known from outside of the site. diff --git a/5-network/08-xmlhttprequest/article.md b/5-network/08-xmlhttprequest/article.md index 7dbc405a0..43d816cab 100644 --- a/5-network/08-xmlhttprequest/article.md +++ b/5-network/08-xmlhttprequest/article.md @@ -2,7 +2,7 @@ `XMLHttpRequest` is a built-in browser object that allows to make HTTP requests in JavaScript. -Despite of having the word "XML" in its name, it can operate on any data, not only in XML format. We can upload/download files, track progress and much more. +Despite having the word "XML" in its name, it can operate on any data, not only in XML format. We can upload/download files, track progress and much more. Right now, there's another, more modern method `fetch`, that somewhat deprecates `XMLHttpRequest`. diff --git a/5-network/09-resume-upload/article.md b/5-network/09-resume-upload/article.md index 7eedc3fbd..b0aa447d6 100644 --- a/5-network/09-resume-upload/article.md +++ b/5-network/09-resume-upload/article.md @@ -48,7 +48,7 @@ To resume upload, we need to know *exactly* the number of bytes received by the 3. Then, we can use `Blob` method `slice` to send the file from `startByte`: ```js - xhr.open("POST", "upload", true); + xhr.open("POST", "upload"); // File id, so that the server knows which file we upload xhr.setRequestHeader('X-File-Id', fileId); diff --git a/5-network/10-long-polling/article.md b/5-network/10-long-polling/article.md index be367cee7..e9d8abe39 100644 --- a/5-network/10-long-polling/article.md +++ b/5-network/10-long-polling/article.md @@ -1,6 +1,6 @@ # Long polling -Long polling is the simplest way of having persistent connection with server, that doesn't use any specific protocol like WebSocket or Server Side Events. +Long polling is the simplest way of having persistent connection with server, that doesn't use any specific protocol like WebSocket or Server Sent Events. Being very easy to implement, it's also good enough in a lot of cases. @@ -29,7 +29,7 @@ The flow: 3. When a message appears - the server responds to the request with it. 4. The browser makes a new request immediately. -The situation when the browser sent a request and has a pending connection with the server, is standard for this method. Only when a message is delivered, the connection is reestablished. +This situation, where the browser has sent a request and keeps a pending connection with the server, is standard for this method. Only when a message is delivered, the connection is closed and reestablished. ![](long-polling.svg) diff --git a/5-network/11-websocket/article.md b/5-network/11-websocket/article.md index f7e3b096c..268b674f0 100644 --- a/5-network/11-websocket/article.md +++ b/5-network/11-websocket/article.md @@ -1,6 +1,6 @@ # WebSocket -The `WebSocket` protocol, described in the specification [RFC 6455](https://datatracker.ietf.org/doc/html/rfc6455) provides a way to exchange data between browser and server via a persistent connection. The data can be passed in both directions as "packets", without breaking the connection and additional HTTP-requests. +The `WebSocket` protocol, described in the specification [RFC 6455](https://datatracker.ietf.org/doc/html/rfc6455), provides a way to exchange data between browser and server via a persistent connection. The data can be passed in both directions as "packets", without breaking the connection and the need of additional HTTP-requests. WebSocket is especially great for services that require continuous data exchange, e.g. online games, real-time trading systems and so on. @@ -19,7 +19,7 @@ The `wss://` protocol is not only encrypted, but also more reliable. That's because `ws://` data is not encrypted, visible for any intermediary. Old proxy servers do not know about WebSocket, they may see "strange" headers and abort the connection. -On the other hand, `wss://` is WebSocket over TLS, (same as HTTPS is HTTP over TLS), the transport security layer encrypts the data at sender and decrypts at the receiver. So data packets are passed encrypted through proxies. They can't see what's inside and let them through. +On the other hand, `wss://` is WebSocket over TLS, (same as HTTPS is HTTP over TLS), the transport security layer encrypts the data at the sender and decrypts it at the receiver. So data packets are passed encrypted through proxies. They can't see what's inside and let them through. ``` Once the socket is created, we should listen to events on it. There are totally 4 events: @@ -56,7 +56,7 @@ socket.onclose = function(event) { }; socket.onerror = function(error) { - alert(`[error] ${error.message}`); + alert(`[error]`); }; ``` @@ -72,11 +72,11 @@ Now let's talk more in-depth. When `new WebSocket(url)` is created, it starts connecting immediately. -During the connection the browser (using headers) asks the server: "Do you support Websocket?" And if the server replies "yes", then the talk continues in WebSocket protocol, which is not HTTP at all. +During the connection, the browser (using headers) asks the server: "Do you support Websocket?" And if the server replies "yes", then the talk continues in WebSocket protocol, which is not HTTP at all. ![](websocket-handshake.svg) -Here's an example of browser headers for request made by `new WebSocket("wss://javascript.info/chat")`. +Here's an example of browser headers for a request made by `new WebSocket("wss://javascript.info/chat")`. ``` GET /chat @@ -88,10 +88,10 @@ Sec-WebSocket-Key: Iv8io/9s+lYFgZWcXczP8Q== Sec-WebSocket-Version: 13 ``` -- `Origin` -- the origin of the client page, e.g. `https://javascript.info`. WebSocket objects are cross-origin by nature. There are no special headers or other limitations. Old servers are unable to handle WebSocket anyway, so there are no compatibility issues. But `Origin` header is important, as it allows the server to decide whether or not to talk WebSocket with this website. +- `Origin` -- the origin of the client page, e.g. `https://javascript.info`. WebSocket objects are cross-origin by nature. There are no special headers or other limitations. Old servers are unable to handle WebSocket anyway, so there are no compatibility issues. But the `Origin` header is important, as it allows the server to decide whether or not to talk WebSocket with this website. - `Connection: Upgrade` -- signals that the client would like to change the protocol. - `Upgrade: websocket` -- the requested protocol is "websocket". -- `Sec-WebSocket-Key` -- a random browser-generated key for security. +- `Sec-WebSocket-Key` -- a random browser-generated key, used to ensure that the server supports WebSocket protocol. It's random to prevent proxies from caching any following communication. - `Sec-WebSocket-Version` -- WebSocket protocol version, 13 is the current one. ```smart header="WebSocket handshake can't be emulated" @@ -107,9 +107,9 @@ Connection: Upgrade Sec-WebSocket-Accept: hsBlbuDTkk24srzEOTBUlZAlC2g= ``` -Here `Sec-WebSocket-Accept` is `Sec-WebSocket-Key`, recoded using a special algorithm. The browser uses it to make sure that the response corresponds to the request. +Here `Sec-WebSocket-Accept` is `Sec-WebSocket-Key`, recoded using a special algorithm. Upon seeing it, the browser understands that the server really does support the WebSocket protocol. -Afterwards, the data is transfered using WebSocket protocol, we'll see its structure ("frames") soon. And that's not HTTP at all. +Afterwards, the data is transferred using the WebSocket protocol, we'll see its structure ("frames") soon. And that's not HTTP at all. ### Extensions and subprotocols @@ -117,9 +117,9 @@ There may be additional headers `Sec-WebSocket-Extensions` and `Sec-WebSocket-Pr For instance: -- `Sec-WebSocket-Extensions: deflate-frame` means that the browser supports data compression. An extension is something related to transferring the data, functionality that extends WebSocket protocol. The header `Sec-WebSocket-Extensions` is sent automatically by the browser, with the list of all extensions it supports. +- `Sec-WebSocket-Extensions: deflate-frame` means that the browser supports data compression. An extension is something related to transferring the data, functionality that extends the WebSocket protocol. The header `Sec-WebSocket-Extensions` is sent automatically by the browser, with the list of all extensions it supports. -- `Sec-WebSocket-Protocol: soap, wamp` means that we'd like to transfer not just any data, but the data in [SOAP](http://en.wikipedia.org/wiki/SOAP) or WAMP ("The WebSocket Application Messaging Protocol") protocols. WebSocket subprotocols are registered in the [IANA catalogue](http://www.iana.org/assignments/websocket/websocket.xml). So, this header describes data formats that we're going to use. +- `Sec-WebSocket-Protocol: soap, wamp` means that we'd like to transfer not just any data, but the data in [SOAP](https://en.wikipedia.org/wiki/SOAP) or WAMP ("The WebSocket Application Messaging Protocol") protocols. WebSocket subprotocols are registered in the [IANA catalogue](https://www.iana.org/assignments/websocket/websocket.xml). So, this header describes the data formats that we're going to use. This optional header is set using the second parameter of `new WebSocket`. That's the array of subprotocols, e.g. if we'd like to use SOAP or WAMP: @@ -173,7 +173,7 @@ In the browser, we directly work only with text or binary frames. **WebSocket `.send()` method can send either text or binary data.** -A call `socket.send(body)` allows `body` in string or a binary format, including `Blob`, `ArrayBuffer`, etc. No settings required: just send it out in any format. +A call `socket.send(body)` allows `body` in string or a binary format, including `Blob`, `ArrayBuffer`, etc. No settings are required: just send it out in any format. **When we receive the data, text always comes as string. And for binary data, we can choose between `Blob` and `ArrayBuffer` formats.** @@ -221,7 +221,7 @@ socket.close([code], [reason]); - `code` is a special WebSocket closing code (optional) - `reason` is a string that describes the reason of closing (optional) -Then the other party in `close` event handler gets the code and the reason, e.g.: +Then the other party in the `close` event handler gets the code and the reason, e.g.: ```js // closing party: @@ -249,7 +249,7 @@ There are other codes like: The full list can be found in [RFC6455, §7.4.1](https://tools.ietf.org/html/rfc6455#section-7.4.1). -WebSocket codes are somewhat like HTTP codes, but different. In particular, any codes less than `1000` are reserved, there'll be an error if we try to set such a code. +WebSocket codes are somewhat like HTTP codes, but different. In particular, codes lower than `1000` are reserved, there'll be an error if we try to set such a code. ```js // in case connection is broken @@ -321,8 +321,8 @@ Server-side code is a little bit beyond our scope. Here we'll use Node.js, but y The server-side algorithm will be: 1. Create `clients = new Set()` -- a set of sockets. -2. For each accepted websocket, add it to the set `clients.add(socket)` and setup `message` event listener to get its messages. -3. When a message received: iterate over clients and send it to everyone. +2. For each accepted websocket, add it to the set `clients.add(socket)` and set `message` event listener to get its messages. +3. When a message is received: iterate over clients and send it to everyone. 4. When a connection is closed: `clients.delete(socket)`. ```js @@ -359,7 +359,7 @@ Here's the working example: [iframe src="chat" height="100" zip] -You can also download it (upper-right button in the iframe) and run locally. Just don't forget to install [Node.js](https://nodejs.org/en/) and `npm install ws` before running. +You can also download it (upper-right button in the iframe) and run it locally. Just don't forget to install [Node.js](https://nodejs.org/en/) and `npm install ws` before running. ## Summary @@ -383,6 +383,6 @@ Events: WebSocket by itself does not include reconnection, authentication and many other high-level mechanisms. So there are client/server libraries for that, and it's also possible to implement these capabilities manually. -Sometimes, to integrate WebSocket into existing project, people run WebSocket server in parallel with the main HTTP-server, and they share a single database. Requests to WebSocket use `wss://ws.site.com`, a subdomain that leads to WebSocket server, while `https://site.com` goes to the main HTTP-server. +Sometimes, to integrate WebSocket into existing projects, people run a WebSocket server in parallel with the main HTTP-server, and they share a single database. Requests to WebSocket use `wss://ws.site.com`, a subdomain that leads to the WebSocket server, while `https://site.com` goes to the main HTTP-server. Surely, other ways of integration are also possible. diff --git a/6-data-storage/01-cookie/article.md b/6-data-storage/01-cookie/article.md index 2667b6948..1b9e93414 100644 --- a/6-data-storage/01-cookie/article.md +++ b/6-data-storage/01-cookie/article.md @@ -2,17 +2,17 @@ Cookies are small strings of data that are stored directly in the browser. They are a part of the HTTP protocol, defined by the [RFC 6265](https://tools.ietf.org/html/rfc6265) specification. -Cookies are usually set by a web-server using the response `Set-Cookie` HTTP-header. Then, the browser automatically adds them to (almost) every request to the same domain using the `Cookie` HTTP-header. +Cookies are usually set by a web server using the response `Set-Cookie` HTTP header. Then, the browser automatically adds them to (almost) every request to the same domain using the `Cookie` HTTP header. One of the most widespread use cases is authentication: -1. Upon sign in, the server uses the `Set-Cookie` HTTP-header in the response to set a cookie with a unique "session identifier". -2. Next time when the request is sent to the same domain, the browser sends the cookie over the net using the `Cookie` HTTP-header. +1. Upon sign-in, the server uses the `Set-Cookie` HTTP header in the response to set a cookie with a unique "session identifier". +2. Next time the request is sent to the same domain, the browser sends the cookie over the net using the `Cookie` HTTP header. 3. So the server knows who made the request. We can also access cookies from the browser, using `document.cookie` property. -There are many tricky things about cookies and their options. In this chapter we'll cover them in detail. +There are many tricky things about cookies and their attributes. In this chapter, we'll cover them in detail. ## Reading from document.cookie @@ -31,17 +31,17 @@ alert( document.cookie ); // cookie1=value1; cookie2=value2;... ``` -The value of `document.cookie` consists of `name=value` pairs, delimited by `; `. Each one is a separate cookie. +The value of `document.cookie` consists of `name=value` pairs, delimited by `; `. Each one is a separate cookie. -To find a particular cookie, we can split `document.cookie` by `; `, and then find the right name. We can use either a regular expression or array functions to do that. +To find a particular cookie, we can split `document.cookie` by `; `, and then find the right name. We can use either a regular expression or array functions to do that. -We leave it as an exercise for the reader. Also, at the end of the chapter you'll find helper functions to manipulate cookies. +We leave it as an exercise for the reader. Also, at the end of the chapter, you'll find helper functions to manipulate cookies. ## Writing to document.cookie We can write to `document.cookie`. But it's not a data property, it's an [accessor (getter/setter)](info:property-accessors). An assignment to it is treated specially. -**A write operation to `document.cookie` updates only cookies mentioned in it, but doesn't touch other cookies.** +**A write operation to `document.cookie` updates only the cookie mentioned in it and doesn't touch other cookies.** For instance, this call sets a cookie with the name `user` and value `John`: @@ -50,12 +50,12 @@ document.cookie = "user=John"; // update only cookie named 'user' alert(document.cookie); // show all cookies ``` -If you run it, then probably you'll see multiple cookies. That's because the `document.cookie=` operation does not overwrite all cookies. It only sets the mentioned cookie `user`. +If you run it, you will likely see multiple cookies. That's because the `document.cookie=` operation does not overwrite all cookies. It only sets the mentioned cookie `user`. Technically, name and value can have any characters. To keep the valid formatting, they should be escaped using a built-in `encodeURIComponent` function: ```js run -// special characters (spaces), need encoding +// special characters (spaces) need encoding let name = "my name"; let value = "John Smith" @@ -67,29 +67,20 @@ alert(document.cookie); // ...; my%20name=John%20Smith ```warn header="Limitations" -There are few limitations: +There are a few limitations: +- You can only set/update a single cookie at a time using `document.cookie`. - The `name=value` pair, after `encodeURIComponent`, should not exceed 4KB. So we can't store anything huge in a cookie. - The total number of cookies per domain is limited to around 20+, the exact limit depends on the browser. ``` -Cookies have several options, many of them are important and should be set. +Cookies have several attributes, many of which are important and should be set. -The options are listed after `key=value`, delimited by `;`, like this: +The attributes are listed after `key=value`, delimited by `;`, like this: ```js run document.cookie = "user=John; path=/; expires=Tue, 19 Jan 2038 03:14:07 GMT" ``` -## path - -- **`path=/mypath`** - -The url path prefix must be absolute. It makes the cookie accessible for pages under that path. By default, it's the current path. - -If a cookie is set with `path=/admin`, it's visible at pages `/admin` and `/admin/something`, but not at `/home` or `/adminpage`. - -Usually, we should set `path` to the root: `path=/` to make the cookie accessible from all website pages. - ## domain - **`domain=site.com`** @@ -102,7 +93,7 @@ It's a safety restriction, to allow us to store sensitive data in cookies that s By default, a cookie is accessible only at the domain that set it. -Please note, by default a cookie is also not shared to a subdomain as well, such as `forum.site.com`. +Please note, by default, a cookie is not shared with a subdomain, such as `forum.site.com`. ```js // if we set a cookie at site.com website... @@ -114,7 +105,7 @@ alert(document.cookie); // no user ...But this can be changed. If we'd like to allow subdomains like `forum.site.com` to get a cookie set at `site.com`, that's possible. -For that to happen, when setting a cookie at `site.com`, we should explicitly set the `domain` option to the root domain: `domain=site.com`. Then all subdomains will see such cookie. +For that to happen, when setting a cookie at `site.com`, we should explicitly set the `domain` attribute to the root domain: `domain=site.com`. Then all subdomains will see such a cookie. For example: @@ -129,19 +120,31 @@ document.cookie = "user=John; *!*domain=site.com*/!*" alert(document.cookie); // has cookie user=John ``` -For historical reasons, `domain=.site.com` (with a dot before `site.com`) also works the same way, allowing access to the cookie from subdomains. That's an old notation and should be used if we need to support very old browsers. +```warn header="Legacy syntax" +Historically, `domain=.site.com` (with a dot before `site.com`) used to work the same way, allowing access to the cookie from subdomains. Leading dots in domain names are now ignored, but some browsers may decline to set the cookie containing such dots. +``` + +To summarize, the `domain` attribute allows to make a cookie accessible at subdomains. + +## path + +- **`path=/mypath`** + +The URL path prefix must be absolute. It makes the cookie accessible for pages under that path. By default, it's the current path. -To summarize, the `domain` option allows to make a cookie accessible at subdomains. +If a cookie is set with `path=/admin`, it's visible on pages `/admin` and `/admin/something`, but not at `/home`, `/home/admin` or `/`. + +Usually, we should set `path` to the root: `path=/` to make the cookie accessible from all website pages. If this attribute is not set the default is calculated using [this method](https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#path_default_value). ## expires, max-age -By default, if a cookie doesn't have one of these options, it disappears when the browser is closed. Such cookies are called "session cookies" +By default, if a cookie doesn't have one of these attributes, it disappears when the browser/tab is closed. Such cookies are called "session cookies" -To let cookies survive a browser close, we can set either the `expires` or `max-age` option. +To let cookies survive a browser close, we can set either the `expires` or `max-age` attribute. `max-Age` has precedence if both are set. - **`expires=Tue, 19 Jan 2038 03:14:07 GMT`** -The cookie expiration date defines the time, when the browser will automatically delete it. +The cookie expiration date defines the time when the browser will automatically delete it (according to the browser's time zone). The date must be exactly in this format, in the GMT timezone. We can use `date.toUTCString` to get it. For instance, we can set the cookie to expire in 1 day: @@ -156,7 +159,7 @@ If we set `expires` to a date in the past, the cookie is deleted. - **`max-age=3600`** -Is an alternative to `expires` and specifies the cookie's expiration in seconds from the current moment. +It's an alternative to `expires` and specifies the cookie's expiration in seconds from the current moment. If set to zero or a negative value, the cookie is deleted: @@ -178,7 +181,7 @@ The cookie should be transferred only over HTTPS. That is, cookies are domain-based, they do not distinguish between the protocols. -With this option, if a cookie is set by `https://site.com`, then it doesn't appear when the same site is accessed by HTTP, as `http://site.com`. So if a cookie has sensitive content that should never be sent over unencrypted HTTP, the `secure` flag is the right thing. +With this attribute, if a cookie is set by `https://site.com`, then it doesn't appear when the same site is accessed by HTTP, as `http://site.com`. So if a cookie has sensitive content that should never be sent over unencrypted HTTP, the `secure` flag is the right thing. ```js // assuming we're on https:// now @@ -188,49 +191,49 @@ document.cookie = "user=John; secure"; ## samesite -That's another security attribute `samesite`. It's designed to protect from so-called XSRF (cross-site request forgery) attacks. +This is another security attribute `samesite`. It's designed to protect from so-called XSRF (cross-site request forgery) attacks. To understand how it works and when it's useful, let's take a look at XSRF attacks. ### XSRF attack -Imagine, you are logged into the site `bank.com`. That is: you have an authentication cookie from that site. Your browser sends it to `bank.com` with every request, so that it recognizes you and performs all sensitive financial operations. +Imagine, you are logged into the site `bank.com`. That is: you have an authentication cookie from that site. Your browser sends it to `bank.com` with every request so that it recognizes you and performs all sensitive financial operations. Now, while browsing the web in another window, you accidentally come to another site `evil.com`. That site has JavaScript code that submits a form `` to `bank.com` with fields that initiate a transaction to the hacker's account. -The browser sends cookies every time you visit the site `bank.com`, even if the form was submitted from `evil.com`. So the bank recognizes you and actually performs the payment. +The browser sends cookies every time you visit the site `bank.com`, even if the form was submitted from `evil.com`. So the bank recognizes you and performs the payment. ![](cookie-xsrf.svg) -That's a so-called "Cross-Site Request Forgery" (in short, XSRF) attack. +This is a so-called "Cross-Site Request Forgery" (in short, XSRF) attack. -Real banks are protected from it of course. All forms generated by `bank.com` have a special field, a so-called "XSRF protection token", that an evil page can't generate or extract from a remote page. It can submit a form there, but can't get the data back. The site `bank.com` checks for such token in every form it receives. +Real banks are protected from it of course. All forms generated by `bank.com` have a special field, a so-called "XSRF protection token", that an evil page can't generate or extract from a remote page. It can submit a form there, but can't get the data back. The site `bank.com` checks for such a token in every form it receives. Such a protection takes time to implement though. We need to ensure that every form has the required token field, and we must also check all requests. -### Enter cookie samesite option +### Use cookie samesite attribute -The cookie `samesite` option provides another way to protect from such attacks, that (in theory) should not require "xsrf protection tokens". +The cookie `samesite` attribute provides another way to protect from such attacks, that (in theory) should not require "xsrf protection tokens". It has two possible values: -- **`samesite=strict` (same as `samesite` without value)** +- **`samesite=strict`** A cookie with `samesite=strict` is never sent if the user comes from outside the same site. -In other words, whether a user follows a link from their mail or submits a form from `evil.com`, or does any operation that originates from another domain, the cookie is not sent. +In other words, whether a user follows a link from their email, submits a form from `evil.com`, or does any operation that originates from another domain, the cookie is not sent. -If authentication cookies have the `samesite` option, then a XSRF attack has no chances to succeed, because a submission from `evil.com` comes without cookies. So `bank.com` will not recognize the user and will not proceed with the payment. +If authentication cookies have the `samesite=strict` attribute, then an XSRF attack has no chance of succeeding, because a submission from `evil.com` comes without cookies. So `bank.com` will not recognize the user and will not proceed with the payment. -The protection is quite reliable. Only operations that come from `bank.com` will send the `samesite` cookie, e.g. a form submission from another page at `bank.com`. +The protection is quite reliable. Only operations that come from `bank.com` will send the `samesite=strict` cookie, e.g. a form submission from another page at `bank.com`. Although, there's a small inconvenience. -When a user follows a legitimate link to `bank.com`, like from their own notes, they'll be surprised that `bank.com` does not recognize them. Indeed, `samesite=strict` cookies are not sent in that case. +When a user follows a legitimate link to `bank.com`, like from their notes, they'll be surprised that `bank.com` does not recognize them. Indeed, `samesite=strict` cookies are not sent in that case. -We could work around that by using two cookies: one for "general recognition", only for the purposes of saying: "Hello, John", and the other one for data-changing operations with `samesite=strict`. Then, a person coming from outside of the site will see a welcome, but payments must be initiated from the bank's website, for the second cookie to be sent. +We could work around that by using two cookies: one for "general recognition", only to say: "Hello, John", and the other one for data-changing operations with `samesite=strict`. Then, a person coming from outside of the site will see a welcome, but payments must be initiated from the bank's website, for the second cookie to be sent. -- **`samesite=lax`** +- **`samesite=lax` (same as `samesite` without value)** A more relaxed approach that also protects from XSRF and doesn't break the user experience. @@ -239,40 +242,40 @@ Lax mode, just like `strict`, forbids the browser to send cookies when coming fr A `samesite=lax` cookie is sent if both of these conditions are true: 1. The HTTP method is "safe" (e.g. GET, but not POST). - The full list of safe HTTP methods is in the [RFC7231 specification](https://tools.ietf.org/html/rfc7231). Basically, these are the methods that should be used for reading, but not writing the data. They must not perform any data-changing operations. Following a link is always GET, the safe method. + The full list of safe HTTP methods is in the [RFC7231 specification](https://tools.ietf.org/html/rfc7231#section-4.2.1). These are the methods that should be used for reading, but not writing the data. They must not perform any data-changing operations. Following a link is always GET, the safe method. 2. The operation performs a top-level navigation (changes URL in the browser address bar). - That's usually true, but if the navigation is performed in an `