-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal.twb
1049 lines (1048 loc) · 61.1 KB
/
Final.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 10500.18.0404.1406 -->
<workbook original-version='10.5' source-build='10.5.3 (10500.18.0404.1406)' source-platform='mac' version='10.5' xmlns:user='http://www.tableausoftware.com/xml/user'>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='clean_weight_df' inline='true' name='federated.0m7oxg00qbqbfb1bbfc4l0st0iyh' version='10.5'>
<connection class='federated'>
<named-connections>
<named-connection caption='clean_weight_df' name='textscan.1sz042d1pym7fp1a967rx1j17k26'>
<connection class='textscan' directory='/Users/jasonkim/QBS 181' filename='clean_weight_df.csv' password='' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.1sz042d1pym7fp1a967rx1j17k26' name='clean_weight_df.csv' table='[clean_weight_df#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='real' name='RespondentSequenceNumber' ordinal='0' />
<column datatype='integer' name='CurrentSelfReportedHeight_inches' ordinal='1' />
<column datatype='integer' name='CurrentSelfReportedWeight_pounds' ordinal='2' />
<column datatype='string' name='HowDoYouConsiderYourWeight' ordinal='3' />
<column datatype='string' name='HowWouldYouLikeToWeigh' ordinal='4' />
<column datatype='integer' name='SelfReportedWeight1YearAgo' ordinal='5' />
<column datatype='string' name='WeightChangeIntentional' ordinal='6' />
<column datatype='string' name='TriedToLoseWeightInPastYear' ordinal='7' />
<column datatype='string' name='AteLess_TLW' ordinal='8' />
<column datatype='string' name='SwitchedFoodToLowerCalories_TLW' ordinal='9' />
<column datatype='string' name='AteLessFat_TLW' ordinal='10' />
<column datatype='string' name='Exercised_TLW' ordinal='11' />
<column datatype='string' name='SkippedMeals_TLW' ordinal='12' />
<column datatype='string' name='AteDietFoodsOrProducts_TLW' ordinal='13' />
<column datatype='string' name='LiquidDiet_TLW' ordinal='14' />
<column datatype='string' name='WeightLossProgram_TLW' ordinal='15' />
<column datatype='string' name='PrescriptionDietPills_TLW' ordinal='16' />
<column datatype='string' name='NonprescriptionPills_TLW' ordinal='17' />
<column datatype='string' name='TookLaxativesOrVomited_TLW' ordinal='18' />
<column datatype='string' name='DrankLotsOfWater_TLW' ordinal='19' />
<column datatype='string' name='SpecialDiet_TLW' ordinal='20' />
<column datatype='string' name='AteFewerCarbs_TLW' ordinal='21' />
<column datatype='string' name='Smoked_TLW' ordinal='22' />
<column datatype='string' name='AteMoreFruitsVegsSalads_TLW' ordinal='23' />
<column datatype='string' name='ChangedEatingHabits_TLW' ordinal='24' />
<column datatype='string' name='AteLessSweets_TLW' ordinal='25' />
<column datatype='string' name='AteLessJunkfood_TLW' ordinal='26' />
<column datatype='string' name='HadWeightLossSurgery_TLW' ordinal='27' />
<column datatype='string' name='Other_TLW' ordinal='28' />
<column datatype='string' name='TimesLost10PoundsOrMore' ordinal='29' />
<column datatype='string' name='SelfReportedWeight10YearsAgo' ordinal='30' />
<column datatype='string' name='SelfReportedWeightAge25' ordinal='31' />
<column datatype='string' name='SelfReportedHeightAge25' ordinal='32' />
<column datatype='string' name='SelfReportedGreatestWeight' ordinal='33' />
<column datatype='string' name='AgeWhenHeaviest' ordinal='34' />
<column datatype='string' name='HaveYouEverHadWeightLossSurgery' ordinal='35' />
<column datatype='string' name='AgeWhenWeightLossSurgery' ordinal='36' />
<column datatype='real' name='CurrentBMI' ordinal='37' />
</columns>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>RespondentSequenceNumber</remote-name>
<remote-type>5</remote-type>
<local-name>[RespondentSequenceNumber]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>RespondentSequenceNumber</remote-alias>
<ordinal>0</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>CurrentSelfReportedHeight_inches</remote-name>
<remote-type>20</remote-type>
<local-name>[CurrentSelfReportedHeight_inches]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>CurrentSelfReportedHeight_inches</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>CurrentSelfReportedWeight_pounds</remote-name>
<remote-type>20</remote-type>
<local-name>[CurrentSelfReportedWeight_pounds]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>CurrentSelfReportedWeight_pounds</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>HowDoYouConsiderYourWeight</remote-name>
<remote-type>129</remote-type>
<local-name>[HowDoYouConsiderYourWeight]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>HowDoYouConsiderYourWeight</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>HowWouldYouLikeToWeigh</remote-name>
<remote-type>129</remote-type>
<local-name>[HowWouldYouLikeToWeigh]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>HowWouldYouLikeToWeigh</remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SelfReportedWeight1YearAgo</remote-name>
<remote-type>20</remote-type>
<local-name>[SelfReportedWeight1YearAgo]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SelfReportedWeight1YearAgo</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>WeightChangeIntentional</remote-name>
<remote-type>129</remote-type>
<local-name>[WeightChangeIntentional]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>WeightChangeIntentional</remote-alias>
<ordinal>6</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>TriedToLoseWeightInPastYear</remote-name>
<remote-type>129</remote-type>
<local-name>[TriedToLoseWeightInPastYear]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>TriedToLoseWeightInPastYear</remote-alias>
<ordinal>7</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AteLess_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[AteLess_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AteLess_TLW</remote-alias>
<ordinal>8</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SwitchedFoodToLowerCalories_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[SwitchedFoodToLowerCalories_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SwitchedFoodToLowerCalories_TLW</remote-alias>
<ordinal>9</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AteLessFat_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[AteLessFat_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AteLessFat_TLW</remote-alias>
<ordinal>10</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Exercised_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[Exercised_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>Exercised_TLW</remote-alias>
<ordinal>11</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SkippedMeals_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[SkippedMeals_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SkippedMeals_TLW</remote-alias>
<ordinal>12</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AteDietFoodsOrProducts_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[AteDietFoodsOrProducts_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AteDietFoodsOrProducts_TLW</remote-alias>
<ordinal>13</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>LiquidDiet_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[LiquidDiet_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>LiquidDiet_TLW</remote-alias>
<ordinal>14</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>WeightLossProgram_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[WeightLossProgram_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>WeightLossProgram_TLW</remote-alias>
<ordinal>15</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>PrescriptionDietPills_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[PrescriptionDietPills_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>PrescriptionDietPills_TLW</remote-alias>
<ordinal>16</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>NonprescriptionPills_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[NonprescriptionPills_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>NonprescriptionPills_TLW</remote-alias>
<ordinal>17</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>TookLaxativesOrVomited_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[TookLaxativesOrVomited_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>TookLaxativesOrVomited_TLW</remote-alias>
<ordinal>18</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>DrankLotsOfWater_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[DrankLotsOfWater_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>DrankLotsOfWater_TLW</remote-alias>
<ordinal>19</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SpecialDiet_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[SpecialDiet_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SpecialDiet_TLW</remote-alias>
<ordinal>20</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AteFewerCarbs_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[AteFewerCarbs_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AteFewerCarbs_TLW</remote-alias>
<ordinal>21</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Smoked_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[Smoked_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>Smoked_TLW</remote-alias>
<ordinal>22</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AteMoreFruitsVegsSalads_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[AteMoreFruitsVegsSalads_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AteMoreFruitsVegsSalads_TLW</remote-alias>
<ordinal>23</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>ChangedEatingHabits_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[ChangedEatingHabits_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>ChangedEatingHabits_TLW</remote-alias>
<ordinal>24</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AteLessSweets_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[AteLessSweets_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AteLessSweets_TLW</remote-alias>
<ordinal>25</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AteLessJunkfood_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[AteLessJunkfood_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AteLessJunkfood_TLW</remote-alias>
<ordinal>26</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>HadWeightLossSurgery_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[HadWeightLossSurgery_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>HadWeightLossSurgery_TLW</remote-alias>
<ordinal>27</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Other_TLW</remote-name>
<remote-type>129</remote-type>
<local-name>[Other_TLW]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>Other_TLW</remote-alias>
<ordinal>28</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>TimesLost10PoundsOrMore</remote-name>
<remote-type>129</remote-type>
<local-name>[TimesLost10PoundsOrMore]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>TimesLost10PoundsOrMore</remote-alias>
<ordinal>29</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SelfReportedWeight10YearsAgo</remote-name>
<remote-type>129</remote-type>
<local-name>[SelfReportedWeight10YearsAgo]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SelfReportedWeight10YearsAgo</remote-alias>
<ordinal>30</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SelfReportedWeightAge25</remote-name>
<remote-type>129</remote-type>
<local-name>[SelfReportedWeightAge25]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SelfReportedWeightAge25</remote-alias>
<ordinal>31</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SelfReportedHeightAge25</remote-name>
<remote-type>129</remote-type>
<local-name>[SelfReportedHeightAge25]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SelfReportedHeightAge25</remote-alias>
<ordinal>32</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>SelfReportedGreatestWeight</remote-name>
<remote-type>129</remote-type>
<local-name>[SelfReportedGreatestWeight]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>SelfReportedGreatestWeight</remote-alias>
<ordinal>33</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AgeWhenHeaviest</remote-name>
<remote-type>129</remote-type>
<local-name>[AgeWhenHeaviest]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AgeWhenHeaviest</remote-alias>
<ordinal>34</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>HaveYouEverHadWeightLossSurgery</remote-name>
<remote-type>129</remote-type>
<local-name>[HaveYouEverHadWeightLossSurgery]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>HaveYouEverHadWeightLossSurgery</remote-alias>
<ordinal>35</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>AgeWhenWeightLossSurgery</remote-name>
<remote-type>129</remote-type>
<local-name>[AgeWhenWeightLossSurgery]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>AgeWhenWeightLossSurgery</remote-alias>
<ordinal>36</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>CurrentBMI</remote-name>
<remote-type>5</remote-type>
<local-name>[CurrentBMI]</local-name>
<parent-name>[clean_weight_df.csv]</parent-name>
<remote-alias>CurrentBMI</remote-alias>
<ordinal>37</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Age When Heaviest' datatype='string' name='[AgeWhenHeaviest]' role='dimension' type='nominal' />
<column caption='Age When Weight Loss Surgery' datatype='string' name='[AgeWhenWeightLossSurgery]' role='dimension' type='nominal' />
<column caption='AteDietFoodsOrProducts TLW' datatype='string' name='[AteDietFoodsOrProducts_TLW]' role='dimension' type='nominal' />
<column caption='AteFewerCarbs TLW' datatype='string' name='[AteFewerCarbs_TLW]' role='dimension' type='nominal' />
<column caption='AteLessFat TLW' datatype='string' name='[AteLessFat_TLW]' role='dimension' type='nominal' />
<column caption='AteLessJunkfood TLW' datatype='string' name='[AteLessJunkfood_TLW]' role='dimension' type='nominal' />
<column caption='AteLessSweets TLW' datatype='string' name='[AteLessSweets_TLW]' role='dimension' type='nominal' />
<column caption='AteLess TLW' datatype='string' name='[AteLess_TLW]' role='dimension' type='nominal' />
<column caption='AteMoreFruitsVegsSalads TLW' datatype='string' name='[AteMoreFruitsVegsSalads_TLW]' role='dimension' type='nominal' />
<column caption='ChangedEatingHabits TLW' datatype='string' name='[ChangedEatingHabits_TLW]' role='dimension' type='nominal' />
<column aggregation='Sum' caption='Current BMI' datatype='real' name='[CurrentBMI]' role='dimension' type='ordinal' />
<column caption='CurrentSelfReportedHeight inches' datatype='integer' name='[CurrentSelfReportedHeight_inches]' role='measure' type='quantitative' />
<column caption='CurrentSelfReportedWeight pounds' datatype='integer' name='[CurrentSelfReportedWeight_pounds]' role='measure' type='quantitative' />
<column caption='DrankLotsOfWater TLW' datatype='string' name='[DrankLotsOfWater_TLW]' role='dimension' type='nominal' />
<column caption='Exercised TLW' datatype='string' name='[Exercised_TLW]' role='dimension' type='nominal' />
<column caption='HadWeightLossSurgery TLW' datatype='string' name='[HadWeightLossSurgery_TLW]' role='dimension' type='nominal' />
<column caption='Have You Ever Had Weight Loss Surgery' datatype='string' name='[HaveYouEverHadWeightLossSurgery]' role='dimension' type='nominal' />
<column caption='How Do You Consider Your Weight' datatype='string' name='[HowDoYouConsiderYourWeight]' role='dimension' type='nominal' />
<column caption='How Would You Like To Weigh' datatype='string' name='[HowWouldYouLikeToWeigh]' role='dimension' type='nominal' />
<column caption='LiquidDiet TLW' datatype='string' name='[LiquidDiet_TLW]' role='dimension' type='nominal' />
<column caption='NonprescriptionPills TLW' datatype='string' name='[NonprescriptionPills_TLW]' role='dimension' type='nominal' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Other TLW' datatype='string' name='[Other_TLW]' role='dimension' type='nominal' />
<column caption='PrescriptionDietPills TLW' datatype='string' name='[PrescriptionDietPills_TLW]' role='dimension' type='nominal' />
<column caption='Respondent Sequence Number' datatype='real' name='[RespondentSequenceNumber]' role='dimension' type='ordinal' />
<column caption='Self Reported Greatest Weight' datatype='string' name='[SelfReportedGreatestWeight]' role='dimension' type='nominal' />
<column caption='SkippedMeals TLW' datatype='string' name='[SkippedMeals_TLW]' role='dimension' type='nominal' />
<column caption='Smoked TLW' datatype='string' name='[Smoked_TLW]' role='dimension' type='nominal' />
<column caption='SpecialDiet TLW' datatype='string' name='[SpecialDiet_TLW]' role='dimension' type='nominal' />
<column caption='SwitchedFoodToLowerCalories TLW' datatype='string' name='[SwitchedFoodToLowerCalories_TLW]' role='dimension' type='nominal' />
<column caption='TookLaxativesOrVomited TLW' datatype='string' name='[TookLaxativesOrVomited_TLW]' role='dimension' type='nominal' />
<column caption='Tried To Lose Weight In Past Year' datatype='string' name='[TriedToLoseWeightInPastYear]' role='dimension' type='nominal' />
<column caption='Weight Change Intentional' datatype='string' name='[WeightChangeIntentional]' role='dimension' type='nominal' />
<column caption='WeightLossProgram TLW' datatype='string' name='[WeightLossProgram_TLW]' role='dimension' type='nominal' />
<column-instance column='[HowWouldYouLikeToWeigh]' derivation='None' name='[none:HowWouldYouLikeToWeigh:nk]' pivot='key' type='nominal' />
<layout dim-ordering='alphabetic' dim-percentage='0.809437' measure-ordering='alphabetic' measure-percentage='0.190563' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[none:HowWouldYouLikeToWeigh:nk]' type='palette'>
<map to='#4e79a7'>
<bucket>"Don't Know"</bucket>
</map>
<map to='#59a14f'>
<bucket>"Stay About the Same"</bucket>
</map>
<map to='#76b7b2'>
<bucket>"Refused"</bucket>
</map>
<map to='#e15759'>
<bucket>"More"</bucket>
</map>
<map to='#f28e2b'>
<bucket>"Less"</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<layout-options>
<title>
<formatted-text>
<run>BMI for People's Weight Goals</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='clean_weight_df' name='federated.0m7oxg00qbqbfb1bbfc4l0st0iyh' />
</datasources>
<datasource-dependencies datasource='federated.0m7oxg00qbqbfb1bbfc4l0st0iyh'>
<column aggregation='Sum' caption='Current BMI' datatype='real' name='[CurrentBMI]' role='dimension' type='ordinal' />
<column caption='How Would You Like To Weigh' datatype='string' name='[HowWouldYouLikeToWeigh]' role='dimension' type='nominal' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column-instance column='[CurrentBMI]' derivation='None' name='[none:CurrentBMI:qk]' pivot='key' type='quantitative' />
<column-instance column='[HowWouldYouLikeToWeigh]' derivation='None' name='[none:HowWouldYouLikeToWeigh:nk]' pivot='key' type='nominal' />
<column-instance column='[Number of Records]' derivation='Sum' name='[sum:Number of Records:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<filter class='quantitative' column='[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:CurrentBMI:qk]' included-values='non-null' />
<filter class='categorical' column='[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:HowWouldYouLikeToWeigh:nk]'>
<groupfilter function='except' user:ui-domain='relevant' user:ui-enumeration='exclusive' user:ui-marker='enumerate'>
<groupfilter function='level-members' level='[none:HowWouldYouLikeToWeigh:nk]' />
<groupfilter function='member' level='[none:HowWouldYouLikeToWeigh:nk]' member='"Don't Know"' />
</groupfilter>
</filter>
<slices>
<column>[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:CurrentBMI:qk]</column>
<column>[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:HowWouldYouLikeToWeigh:nk]</column>
</slices>
<aggregation value='true' />
</view>
<style />
<panes>
<pane id='6' selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:HowWouldYouLikeToWeigh:nk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-cull' value='true' />
<format attr='mark-labels-show' value='false' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[sum:Number of Records:qk]</rows>
<cols>([federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:HowWouldYouLikeToWeigh:nk] * [federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:CurrentBMI:qk])</cols>
</table>
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='6' param='[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:HowWouldYouLikeToWeigh:nk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:CurrentBMI:ok]</field>
<field>[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:CurrentBMI:qk]</field>
<field>[federated.0m7oxg00qbqbfb1bbfc4l0st0iyh].[none:HowWouldYouLikeToWeigh:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Sheet 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO3dd3wVdb7/8declk4CSYAQemjSOwhIEbCu5Wdjddde1lW36RXb6lrX7etd
Xcva1mvFFaSroIIgVXpoCZACIXRIz8kpM78/AhFWwUByck4y7+fj4UPOnDkzn5l8Z95nZs58
x7Asy0JERGzHEe4CREQkPBQAIiI2pQAQEbEpBYCIiE0pAEREbEoBICJiUwoAERGbUgCIiNiU
AkBEqlkWhw7swxc8/t5Qi+IjBykpr2ywMspKDlNUXNZg86sbi6LDBykt94a7kDOiABBpYHmr
FvD4n1+mej9r8uoffseSddvPbGKWyTvPP8vHny8HYMHMd7n15w9TZYG/dC+TH3yEfaW+Wk7K
xxMP30NuUdUJw6f842mmz1sJgN9bypP/80u+XJkNwL6cTH5z3yMUeYOnVfbhXVk8+MBjVBz7
WLCUay+6nHU5+5jzn1d58aMvalMwbzz3DNdff33Nfzf97Lf4T/GRd1/+Ix/O+waAJbPf5q77
fkuxN4iv8gi/vuNXlPi/uxzle7dx5aSfUHDk+3byFm//5THmfrX2h+uNQAoAkQbmrzjCzp17
a17vL8ilqKQSsMjfvpn5n3/Olh07sYCC/B0cKfViBnxsz9pMSVkVZsDLjpxcAqYFhkGLFnEs
XLoWyzJZvexr8nesYtueMgpytrGzsJTEWDdlRw6yaOEXLFmxhkpfADPoZ3v2DizA760gJ6d6
fsHg0R2gZVKQv40VK75hf1EJlmUA4I6OZ8zIfrz40it4/QHee/010nsPJTHawZEDhSz48nO+
WbsRX8DE9FeyPXcnpmXhLS8mt6CwZplNXwX5O/KpOdZwxPHAE4/QJa05pmVhWBZYJnnZWRSV
V1JVUcyyRQv5euk3VFQFjn7I4Irr7+DZZx6l/Eg5N9/zAE8/9gtcwP6CPL74fD5rMrcSNL89
okmJi2Hp0mUALF68jOxNmezae5gjuzazrcIk1umg9Mh+Fi/4khWrNuAPWsQkt+WhyffRspkH
ywywbctGVq5cxbZtOyj3BrCsIOWlR1i9YjnrNmadML9IpwAQCYMqbwU7d+azM38nZZXV39Cz
Vn3BL+57iBUrlvHgvXezcN02Pn7zH0yZu5TDhdncfuONzFm8lj1Za3jsqefwWwAGfXv1oWB7
JmVlR9ix38+lF45kU+ZWcrZtpEPvPjiqinnol3cxde4i/u+Fv/D0//4f3vIiHrj3UQJAUUEW
jz/1POZx9W1eNo+77voVM+fMZV3WruPeMRh50SRSfNt59dU3WLa9jOuvOJ+q4j3c/bNbmffV
cl7402O8+P4sfMX5TH7qTwRMKNi+ij+89NbJV4hh8urf/8qewxU1g9YtnsXkx/5CSXk5f3vy
f3h/zkKmv/1P/vzyB1gWYBgkJafStm0b4p1uWqa2pm16K4p2beHOn/2Sr5as5I+PPMA7s7+u
meZZAweyffMW/KaPbQXlXD6mLxu37WTj2o2c1aMvVlURD997N59+vZI3nnua/5uxENNXxN+e
/welPpNP3nmJex96jLlzZ/KL2+9kw/bqUPv4/Tf4eNZM/ufX97Ep72Bdm0eDUQCIhMH2rFU8
/dRTPPnUU6zesRew+HLObM6fdA+/feRR7r76PObMXszg4cNYt2Yt2zPX0mf0aFavzSQzczXd
Bg4hxln9rbxNjz549xSQvTULKyGdcf17k7lpKxs2bKZX7wHs27GWfFrx1z8+wZ//+DhZq+Zz
sDzAsa/fhgFgnFDfJ5/N4eJb7+eZJ3/HxKFnnfCeKyqee+68lXfefJWLfnITrRKj2bhkAdEd
R/P07x7h6Ucns3D6p/j+a5o/xLCoqSl303Ke+Osb3Pfob0k0i1iyYhe33PwTrv3x1WxcNo8S
v3nS6axY8iVdRl3I4489wlOP/Jw5n8ypea9legbN/DvJ2rqRQGJbho8YzKYN69m6dQv9B/Rk
16a17KmI57prruTaKy9kwRefYR7tL9P0VzDj8wVMfuZ/efzx39E7PR6Ovnftbffy9NNPMbB1
FCWlpae13OGkABAJg979x/CvV1/jtddeZUzv9gD4qoLExScBkJAQT7AqQJ/+AzlQkMnnqzZz
2RU/oSgvk6Ur1zF8xIiaaTmik+mTEcWnC76kXbc+ZPTtR/7mFWzZkseg3h0J+PzENIvDZUB0
XCxOl1F9msI4dqriuzvqyspy2qS1Ovrqu6c0eo8YTUpCOyaOHFhduy9AbFwzHIZBTFw8Ln+A
E3fRpxcGxQcLqPJZxCXEYZpBvJWVzPt0DovXbmP8hAm4TvHZoN9HXLN4HAYkJMXjDwZq3otu
lkKnlilMe2cG3fr1oUvn7uzOymTNjj307NULfzBI6eGDfPrJHNblFzN+9Nk1n7Usi2AwQHRU
zHfWisNwnMlihp0CQKSBWVTvTI5/DQaDRg5l+pR/8dm8T3jtg+kMHdWPuFZdaEcRi1fk0Kd3
L9pEl7B4UykDu7Y5booGA3v3ZsZHsxkwsBfRiW2JLtpMvpVMemoSLTv3wsxZy7+nzOTFF14i
tkV3UhI8OCp3886H03j59bco+68rp926dOedl59n5szpfL3h+y9QG9a3e7uegwaRveoTPpr9
KS+/+E86DB9IjNPJvpwdTJv2Ea+/+eF31kF56T7eePVlXnrpNQ57T4yL/mOu4te3XMoTjz1K
haMZ3bolU+VsRt/ePfBVVOB0OU6Y2HEHD/TqP4hVcz5mxtzP+OtzbzCo39Bvx3W46DOgB7Pm
z6VPr4Ektk6HQ9nsOBhFj3aJtOvSnWYJBlEt2tCzW2d85RUYR/fqTncs5w4fxqP33s3k//kN
K3IOfU80Ni7Oxx9//PFwFyFiJw6Hg2apbenWqS2GAe6oKNpndKfvgMEke3xkbt7GkHGXccX5
o3A6nKS2SqVz36EM6p1Bq5RkuvQeSP/eXXAY3+6AE1NSad6qI+NGDScuJprmzZPpPfBs+nbv
RFR0AsMG9WTdmjW4EtO5+65bSE5qRpu0FuTm7qb/8HPo2asbPbp0xO3y0LV7T/r07YdVfoR9
R8o4Z9xYzjqrLy2TE75dCMNBVEw0Pfv0JMrlJKpZKgO7t2ftmjW0aNebn918LfEJybSKd1Cw
7wjDzhlL9y4ZdOnY7ujHDVweDw6HE5fLoHuvviTERtHlrB4kxcXSpl0Hzhk9liSPH6Ja8v8u
u4DC7VvZd7iY/kNH0DG9FTWLbxh4PNH06NOTuCgXSS3b0bVdEmvXZdKh13Bu/clleFzOYyOT
0jyJpNQ2jJ8whrjoaFJaJNBn+Nn07doRd2wzhg/oQ27WVg6XVnL2OaNpndIctyeGHt2706VH
b4YP6UffAf3ZunIVoy68nA5tU2nbsQepLeJxRbnp3K0nifHRDdOY6sjQA2FERGrD5N9/fYIV
uUcIlB/GSGzHn//wFInRpzohFdkUACIitRTweSko2I3PNOjYscNxRxaNU6MJAMuyCAQCuN3u
cJciNlNWVkZ8fHy4yxAbCnXbazQXgS3LoqyssdweLk1JYWHhD48kEgKhbnuNJgBERKR+KQBE
RGxKASAiYlMKgCYia8MaSn0nvz1epL6tXDSfzdu/7SfICpQz75O57NpfHMaq5HQoAJqI7ZvX
UOo7sStb0wzi8/lr7jo9div78T/8Ms0gwaCCQ07fxrXLmT9/IYGj7WlnViZLV61ie8FhoLq9
+XxVBM3vtq9jbdAMnthGpWE13jsY5JQO7t7Bf2bOIzrKRfP0nlwyYTBzpv6HwqIKzIDJVTfc
QmDvVj7+dBEul4uOPYZw3thBja0rEwmj6OatiDKr2HOwjLYp8axbu5GhwwYAEAxUMWfqFAqL
qvD7A1xy1SRaxfmZt2ATzqrdHPIncN45vZk+ez7RHict2vXmkolnn3B3s4SejgCaJIuF8+dx
7iXXcOONN3F421oK9+wh92AlP73hJm6+/lqaRbnYuD6TgaPP59bbbmPYgK7hLloaGcuCPr26
sn5jNqa/nMISg3YtYgHYk72Wg0ZL7vjZ7Vx94Ujmfb4IywywfOFcotJ7cd2kS/j68/mMv+Qa
brzpZg5mr+ZQedUPzFHqm44AmiST4sOHWbloPuucBl7TxBnfgiE90nn7zddwe5px5Y+vYcjI
kcyY8zmrF8+j/7BzGTmoWaPrzVDCyaJD114s+3Auu1J8pHXvh8tRff6/+FAxPc/qigNo1aEz
gc83YgKd+4xg4oiBQJDiw4dYsWg+a50GXtMi8D2niiS0FABNkoOE5s3pNeJczmqfwpEDe/G4
HXQbMJKzx13Aii9nsWZ9Dn0zEvnJTbeAr5QX/vV/DBvQA7dTCSC1545rQbukIB9/sYKrb/45
pTuqH76SmJzIio3ZDOuTwb78XFxxsTiA6OiYo5+sbqO9R57LWe1SOHxgL7ExnrAth10pAJqI
uPh4Pnz9JRwG9BwyivHnX8BHH/+Hb+LiCFgeLv3RBObNmoHpiaGstJwrfjyRgqxlTJsxG48T
uvUZiksnBOU0pKS2xGkYDBg4kJ1VO0hPjCIvphkJhoc2XQaQuuk/vP7Gm/gqqrj46kk4nH6a
JyUe/bTB+PMvZOr0Y200imuuvRLU00uDajR9AZmmSXFxMc2bNw93KY2GaZoEgyYulxPDMLAs
k4A/gMPlwumo3tsHAn4sy8Dt1neBk8nOzqZbt27hLqPRsSwLX1UVTrcHl/P7v11U/wrNqmmj
cqJQtz1t9U2Yw+HA4fh2wzMMB27PiYfZLpe+ckloGIZBVPSp+8V3OJw4dOQZNlr1IiI21aiO
AEpLSzFD+EuBY2fDIv1Q1DTNE77ZR6KmVKPf7+fQoUMRUUs4WZaFZVkRXWdT24ZD3fYaVQAk
JCSE9BqA31/9YNRIf+ZARUUFsbGx4S7jlJpSjYcOHSI5OTkiagmnYDBIIBAgKioq3KWcVFPb
hkPd9iI3ykVEJKQUACIiNqUAEBGxKQWAiIhNKQBERGxKASAiYlMKABERm1IAiIjYlAJARMSm
FAAiIjalABARsSkFgIiITSkARERsSgEgImJTCgAREZtSAIiI2JQCQETEphQAIiI2pQAQEbEp
BYCIiE01qofCR5rg3kyC+7fUalxXxrk44lJCXJGISO0pAOogsGMBvpX/qtW4zpRuoAAQkQii
U0AiIjalABARsSkFgIiITSkARERsSgEgImJTCgAREZtSAIiI2FSD3gdgWRa7c7fy5cIlFJV5
adelFxefPwazpJApM7/E7XaBYXDOhAtol9q8IUsTEbGdhr0RzPSzduNWxv/oClo1j+Ojt99i
W35P4krzSUjL4PyR/bAsg6iY6AYtS0TEjho0AAynh0su/X8A+CqKKa0oIyY2mr25+4iP6YK3
yk9SUiJOR/WZKdM0sSyr5t/BYJBAIBCy+o7NzzCMWo9fW8FgEKuearcsK6TroT40pRqdTmfI
l6UxrC/TNDFNM6LrDAaDGIYR0TVC5LS9sHQFsXvHZv4z/VMGjz2fTq2aYR5oy57tOcyfu46C
/UVce+NNpCc3w7Ksmp2sZVknvA6F052HhVXraZuWBfVYeyjXQ31pKjU6HI4GWZZIX18NsQ3W
1bEaa/slLpwioe01cABY7Mpay3szl3HdDTfRtlULDKBLn6F06QNYFhuXfsI3mTtIHzsAp9OJ
0+kEqleWy+XC4/GErDq/3w+A2+2u1fiWw0mwltN2u1w466n2QCAQ0vVQH5pSjX6/P+TL0hjW
VzBY3dojuc7T3YbDJVLaXoP+CsgKBpgzez5XXncNzeM8lJeVEwgG+GbZUvYdKqKyspy8/EKS
EuMbsiwREVtq8F8BpbdP46vPZoIFGE4mXHQprZKb8cn0qQSxaNmuCyP6ZDRkWSIittSgAeBw
ebjk6hu++0brFtzYtVfNy8Zw/k5EpLGLmOcBaKcvItKwdCewiIhNKQBERGxKASAiYlMKABER
m1IAiIjYlAJARMSmFAAiIjalABARsSkFgIiITSkARERsSgEgImJTCgAREZtSAIiI2JQCQETE
phQAIiI2pQAQEbEpBYCIiE0pAEREbEoBICJiUwoAERGbUgCIiNiUAkBExKYUACIiNqUAEBGx
KQWAiIhNKQBERGxKASAiYlOucBdgF8F9G7H8lTiSM3DEtwx3OSIiOgJoKFUL/0DltNsJ5i8N
dykiIoACQETEthQAIiI2pQAQEbEpBYCIiE0pAEREbEoBICJiUwoAERGbUgCIiNiUAkBExKYU
ACIiNqUAEBGxKQWAiIhNKQBERGxKASAiYlMKABERm1IAiIjYlAJARMSmwhAAFnsK8tm0eQtF
pRU1Qw/uLWBD5iZKyr0NX5KIiA01aABYZoAZU97is4XLKdiZw6svv8a+IxXs3ZHJv9+exp6C
XF5//XWKKvwNWZaIiC018EPhDYaMPp+01q0xDAiWvM3eQ0fYtngxl/70RrqlNSPO+g/rs/IY
M6Brw5YmImIzDRoAhsNJm7Q0TDPIumVfsX1/BaPaJLOszEWHVgmAQUbXzizNLwHA7/cTDAYB
sCyLqqoqKioqTjGHurEsq2a+Pzju1hlYezJPex4+vx9/HZfBNM2Qrof60JRqjI6ODvmyNIb1
ZVkWlmXVbJOR6HS24XCKlLbXwEcAYAW8fPDvN6iKS+fmW28hPsoBDgPj2AjGt+O63W7cbjdQ
vcKioqKIjY0NWW3HGs2xeZ5K6dK/g//0/zAetxt3HZehoqIipOuhPjSlGr1eb8iXpTGsr2Aw
SCAQICoqKtylnNTpbMPhFCltr2EvAlsmn017j8SM4dz440tJiPFgGA5SYnzk7S8DIDc7h9SU
hAYtS0TEjhr0CCDoryJz8w7a9kpg6kc7wHAycuwERo0dzb/f+z8GnNWBDduPcMfYTg1ZloiI
LTVoADjcUdx81y/wBcyjQwyaJ8QQk9KHW69N4kBROcPOmUBibGQfvomINAUNexHYcJDSsvX3
vpea1o7UtIasRkTE3nQnsIiITSkARERsSgEgImJTCgAREZtSAIiI2JQCQETEphQAIiI2pQAQ
EbEpBYCIiE0pAEREbEoBICJiUwoAERGbUgCIiNiUAkBExKYUACIiNqUAEBGxKQVAAzNLdhPc
m4lZujfcpYiIzSkAGphv+UtUvH8t/g1Twl2KiNicAkBExKYUACIiNqUAEBGxKQWAiIhN1SkA
vF4vhw8fJhAIsHjxYjZv3oxlWfVVm4iIhJCrLh/+4osvCAaDJCcnM3v2bMrLy3niiSdITk6u
r/pERCRE6nQEcOjQIdLT01myZAk33XQTffr0Yf/+/fVVm4iIhFCdAmDYsGG8+OKL7N+/n4yM
DHJyckhPT6+v2kREJITqdAqoW7duPPfcc7jdbtxuNw8//DAJCQn1VZuIiITQGQVAZmYmb731
FqZpYpomLlf1ZHw+H0899RSJiYn1WqSIiNS/MwqALl268Jvf/IbPP/+chIQEhg0bhmVZvPLK
KxiGUd81RpRA7mJ8q96AgDfcpYiI1MkZXQOIiYkhPT2d6OhoHA4H6enppKenExUVxa5du+q7
xohilR8kWPANWGa4SxERqZM6XQMYP348jz32GIsXLyYQCGAYBhkZGfVVm4iIhFCdAsDj8fC7
3/2O0tJS3G43aWlpeDye+qpNRERCqE4BsHz5ctavX899992Hw6FeJUREGpM67bUHDhxISUkJ
06dPZ9u2bWzbto1AIFBftYmISAjV6QggNzcXy7JYs2YNa9asAWDy5Mk0a9asXooTEZHQqVMA
DBkyhF69epGbm4vH46Fz5844nc76qk1EREKoTgFQWFjIM888Q4sWLfB6vSQkJPDQQw/hdrvr
qz4REQmROgXA7Nmzueqqqxg3bhyWZfHss8+SnZ1Nr1696qs+EREJkToFQLNmzcjPzycYDOLz
+di/fz/x8fH1VZuIiIRQnQLg8ssv58UXX+TGG2/E4XAwadIk2rdvX1+1NWm+la/iW/lqzWtH
Sjfirp8WxopExG7qFACVlZVcc8013HXXXRiGwbZt2zBNUxeCRUQagTrdBzBr1izy8vKIjo7G
4/Ewe/bsJt8XkIhIU1GnAIiNjSU/Px+/34/X62Xv3r3qCkJEpJGoUwBcdNFFZGdnc/PNN3Pr
rbcyYsQI0tLS6qs2EREJoTpdA4iNjeXRRx9l7969JCUlYZrqIllEpLGo0xHAnj17ePDBB3n0
0UfJycnh73//OxUVFfVVm4iIhFCdjgBmzZrFpEmT2Lt3L5ZlkZiYyJ49e+jSpUt91SciIiFS
pyOAlJQUsrOzqaqq4vDhw2RmZtbqecD+qgpycvOxrOrXpr+S7KwssrKyyMreRoXXX5eyRESk
Fup0BHDJJZfw7rvvsmjRIgzD4LrrriMlJeUUn7DYtnY50+cvxBuMZfIDvyLKgEN5m/l04Qb6
9egMQFJqS2Kj9WB5EZFQqlMAlJeXc9VVV3HDDTcAsGHDBkpLS0/ZHbQjpgV3/+JOXn/5g5ph
u/cfoN+g0YwZrMdJiog0lDMKAMuymDJlCnPnzsXlcnHXXXdhmiYvvfQSzz///Ck+aZDRozuY
ZRjHDa0sL2NT5gJ2bVlKanpnxp4znCi3E7/fTzAYrJlnVVVVSC8yW0fPSfn91aegrP2bsHK+
PHGcw9tDMm/TNGu9bKczbrg0pRqjo6NDviyNYX1ZloVlWTXbZCT67204UkVK2zujAAgEAnz+
+ec8//zzHD58mN/+9rfEx8fzzDPPnFFncEPGXUq/UQH8VZUsnDuNJRtSOHdQd9xud03X0qZp
EhUVRWxs7JmUXCvHGs2xefpK86la/3bI5nc8h8NR62WrqKgI6XqoD02pRq/XG/JlaQzrKxgM
EggEiIqKCncpJ/Xf23CkipS2d0YBYJomLpeLuLg43G43LpeLp556ipSUFCzLwjCMH57IMZZF
pddHXHwcMTExdO3cjm3llWdSloiInIYzvgaQk5PDnXfeiWVZ5Ofn88gjjwDwpz/9iebNm3/v
ZywzwKezprHnUBG79uzknTdfZ8CIczm4dTnb9pbSPDGa3YWH+Omt55xpWSIiUktnFAAej4f3
33+/5nzb8U75PGDDyfgLLz/hc06XC2ePDowsL8frC5CQkIDHXadr0yIiUgtntKc1DIPk5OQz
+tzJOouLi08g7kyKERGRM3JGAVBRUVHzLd7hcBATE1OvRYmISOidUQB89dVXmKZJVVUVSUlJ
jBs37oT3T+sisIiIhMUZBUC/fv144IEH8Pv9OJ1Opk+fXvPek08+SVJSUr0VKCIioXFGAZCW
lsYrr7zCJ598QlxcHAMGDKh5LyEhod6KExGR0Dnji8CxsbFceuml7Nq1iyVLlhAdHc2oUaP0
PGARkUaiTr2BZmdn8+c//5nKykp27drFww8/HPG3s0csK4hVWYRVWRTuSkTEJur0g/sFCxZw
2223MWjQICzL4oUXXiArK+uEU0JSO+ahHZS9PAqcUST8cnW4yxERG6hTAHTv3p05c+aQkJBA
RUUFGzZs4Mc//nF91SYiIiFUpwA499xz8fl8vPHGG0RFRfGrX/3qB54HICIikaJOAeB0Orn4
4ou5+OKL66seERFpIHW6CGyaJqZp1lctIiLSgOoUAF988QXTpk2rr1pERKQB1SkABg4cyLp1
68jNza2vekREpIHU6RrA5s2b2blzJw8//HBNN9B/+MMfTvo8ABERiRx1CoBhw4bRt2/fmj6B
ABITE+ulMBERCa06nQIKBAK8+eabPPDAA+zdu5e33nor4h/GLCIi1ep0BDB16lQyMjLo3Lkz
Pp8Py7IoLCykU6dO9VWf/VhB/NnzAHB1Go3hjg5zQSLSVNXpCCAYDJKQkIBhGAQCAfLz83G7
3fVVmz2ZAbxz7sU7514s75FwVyMiTVidjgAuv/xynnvuOXJycgA4++yzSUtLq5fCREQktOoU
AElJSUyePJndu3fjcrno2LGjngYmItJI1CkACgoKeOKJJ3A6nZSXlzN69GhuvfVWHI46nVkS
EZEGUKcA+PTTT7niiiu48MILCQaD3Hvvvezbt0+ngUREGoEzCoCqqipKS0tJS0ujtLSUgwcP
AtCyZUt9+xcRaSTOKAC2bNnCa6+9hmma+Hw+Fi1aBFR3DhcbG1uvBYqISGicUQD079+fF154
Aaj+KahlWTXv6ZnAIiKNQ52uAWzatIl//OMf+Hy+mmF/+9vf1BeQiEgjUKcAWLZsGZdeeikT
JkyoGebxeOpclIiIhF6drtgOHTqUXbt2sXv37pr/gsFgfdUmIiIhVKcjgF27dvH111+zc+fO
mmEPPPCAegStJxVTbsDd9xqiht4e7lJEpAmqUwAUFxdzyy23cO6559ZXPXIcq3QPlrc43GWI
SBNVpwDo1KkTH3zwAbt3764ZduWVV+qnoCIijUCdAiA9PZ3zzjvvhGG6EUxEpHGoUwAkJCTQ
uXPnE4bpPgARkcahTgGQk5PD7NmzAbAsi8zMTN544w1dBBYRaQTqFACDBg1i0KBBQHUAPPnk
k3i9XgWAiEgjUOefgW7evBmoDoC8vDyKiopo1apVvRQnIiKhU6cAKC8vp6CgoOb1pEmT6Nq1
a52LEhGR0DujALAsi0OHDpGSksJll132nfdERCTynVEABAIBfv/73+P3+2uG+f1+cnNzeffd
d0lJSam3Am3PV4ZZUgiAEZ2I4YkLc0Ei0piVeIvxBao78DyjAHC73fztb38Dqnf8y5cvZ+rU
qfzoRz8iISGh/ioV/Jkf4c/8CICocx/F029SmCsSkcbsX0tfYE3BN0AdrgGYpslXX33FtGnT
6NatG4888gipqan1VqSIiITWGQWA3+/njjvuIDk5mRtuuIHk5GRKS0spLS2lffv2uFx1urYs
IiIN4Iz31K1bt8bpdDJjxowTht9///26D0BEpBE442sAzz77bH3XIiIiDUg9t4mI2JQCQETE
phQAIiI2FZYAKDmynzXrMjGP3TRsBVm34ms+nj6Tbfl7w1GSiIjtNHAAWKxf/Ci9jZIAABwV
SURBVDmvv/Uun366EL9VPSxr1SKWb9pN355dmTv1XQoPlzdsWSIiNtTgP9hv2fEs7hk+jFde
eKd6gGWxas0mLrvuDtISPIwdnMOGrDzanN3re/sVCnVfQ5ZlRXB/Rt/WFrk1fqsp1dgQy9IY
1hc0jjqbUo2hXJYGDgCDtHbpYJbVDLGsIEVeF8lx1aW0bteG7Tu8QHWfQ8Fg8Oh4Fj6fj8rK
ypBVZ657B+vAZqqODSjZfarRG1zVho+oylsOQJlh4JzwTJgrOjnTNEP6t6oPta0xKioq5MvS
GNYXVNd5bJuMRMd2lsf3UxaJwtn2TNOs+Xf4b9k1HLjdToJHQ85X6cXhiAKq7zdwu91AddEe
jyekD5yvPJhJIGdByKZfZwe3Vv8HYBjExv49vPWcQkVFRUj/VvWhtjVWVVWFfFkaw/oKBoME
AgGioqLCXcpJHdvxH9tvRKpwtr3jn9se9l8BGThon2ywPrsQywyyfsNW2qWrN1ERkVBr0CMA
y/Qza9oUdh8oYt+h/bzx8osMGnMBoyZeyCtvfsCmJfH4PClMzGjbkGWJiNhSgwaA4XBz6VU/
/d73fvXLX1Dp9REXF4fDYTRkWSIithT+awBHudweEtyecJchImIbYb8GICIi4aEAEBGxKQWA
iIhNKQBERGxKASAiYlMKgMbKguD+LZgVh8NdiYg0EiXeEir9FTWvFQCNlkXFu1cTyP403IWI
SCOxIn8JW/ZtqnmtABARsSkFgIiITSkARERsSgEgImJTCgAREZtSAIiI2JQCQETEphQAIiI2
pQAQEbEpBYCIiE0pAEREbEoBICJiUwoAERGbUgCIiNiUAkBExKYUACIiNqUAEBGxKQWAiIhN
KQBERGxKASAiYlMKABERm3KFuwCpm6qFz1K18I+4+19L9NgHa4aXv3Up5pH8H/y8Ed+S+Nvm
h7JE+S9lXy3i8Cv/qvX4ns6daP30UyGsSOxg8sxfsrto1wnDFACNnWUBQbDM/xpsghWsxedr
MY7UL8sC0/zh8Y45nXFFTsI0g1hYJwzTKSAREZtSAIiI2JQCQETEphQAIiI2pQAQEbEpBYCI
iE0pAEREbEoBICJiU7oR7KhAwSqCB7LCXcYZC+5aiffzJ2peW+UHw1iNiDQGCoCjzMM5WCWF
4S7jjJmHtmMe2h7uMkSkEdEpIBERm1IAiIjYlAJARMSmFAAiIjalABARsSkFgIiITSkARERs
KiLuAyjbm83L739Ci8QEMAzOvehSOrZKDndZIiJNWkQEwJ7de+g5aAznjegNgMPpDHNFIiJN
X0QEwP4Deyn3B8nK3kbrNum0SGoGQCAQwLKqn2FpmiZ+v5+qqqr6nXlVMfjKCZbZs+sEy6L+
1ynVf69QTLc+1bZGt9tdr8sSCAROa3zT56eyYHfNayMhHiM6ut7qqS3LsiL+72oefX6yGeHP
UW7Itnew/ABgETC/2+4iIgC69BqCe89BDhTu4tPZs/jRtTfRvV1LHA5HTQAAOJ1OXK76Ldm3
7E0Ca9+u12k2JgbU+zqF6p1cKKZbn2pbo2ma9bosDsfpXXoLFBRw4H/ur3mddMftxI0ZXW/1
1JZpmliWFdF/12PhGsk1QsO2vcmzf/Gdh8EfExFrqVW7zrRq1xmAdi3crMsuqAmAYwzDwOFw
4Kzn00OGYdTr9Bodg3pfp1C9XkMx3fpU2xqDwWC9LsvpBsD3fT5c6zac866NY9/8I7lGCF/b
+2/h/xWQZTJv1nRWr99MXt4Ovlq6ho7tWoa7KhGRJi/8AYDB2aNGcGRvPpmZWxgw7hIGdE0P
d1EiIk1e+E8BGQYJzVsy4fwLw12JiIitRMARgIiIhIMCQETEphQAIiI2pQAQEbEpBYCIiE0p
AEREbCr8PwMNg0De1/g3TgUgeCA7zNWEl+UtpnL2bwBwtMggasQ9Ya6oaTr4wj+x/H4Aggfq
1u9U2bz5VK5d+73vxQ4eTNw5o+o0fWka1u9ew4Jt80/aDQTYNADMol0Ets0PdxmRIVBVsy6c
6YfDXEzTVfnNKqx66kTNl5MDOTnf+56rZUvi6mUu0tjtLd3Dyp3LTjmOTgGJiNiUAkBExKYU
ACIiNqUAEBGxKQWAiIhNKQBERGxKASAiYlMKABERm1IAiIjYlC3vBBZpSIdeerne7gL+IWWf
fkb5goUAJF3/U+LHjG6Q+UrjpAAQCTGz0ttg87L8/po+h479X+RkdApIRMSmFAAiIjalABAR
sSkFgIiITSkARERsSgEgImJTCgAREZtSAIiI2JQCQETEpmx3J7Av8yOCP/CgZLsyS/dS9c0b
dZqG+6yLccS3qqeKGjezspKy+Z8T2LMnLPP3btiAVVFxwrDoPn3wdOoYlnqk4ZT7yti4Z/0P
jme/AFj1JlZRfrjLiEhWyW58X/+tTtNwpQ8EBQBQHQBF770ftvlXrvyGypXfnDCs+S3RCgAb
KKsqZfWulT84nk4BiYjYlAJARMSmFAAiIjalABARsSkFgIiITSkARERsSgEgImJTCgAREZtS
AIiI2FSTvhPYLNuHd/7vThhmle0PUzX24P3qTxjRzTCDQSqcznqbrqN5J6LHPnDan/OteZtA
/pLvfe+/a4w+72kccSmnPY+yL76k4r/uuIXIfCh72bx5VK5eU6txnUmJJP/8TgB8eXkcef8D
LNPC4Tj198a4MaOJG3F2nWuVkzNNkz9/+fRJ368KVtVqOk06APBXEsz7OtxV2Iq5d0PNv4P1
OF3LW3JGnzMPbjtlGzihxoD3jObhLyzEu/6H+12JBP6C3fgLdtdqXGdqas2/zdIyqtZvOMXY
34rq0f2MapPas7BYX1i7ID+VyAgAM8jKJV+RU3iIvoPPpmdG23BXJCLS5EXANQCLTSu+ZENe
MSOHD+SLmVPYdbAs3EWJiDR54Q8Ay2Tt+mwuueJi2nXIYOyQnmRm54W7KhGRJi/sAWBZJkVe
B81jqs9GtUxvTWVF7S5giIjImQt7AGA4iPI4CVjVL30VlTgcRnhrEhGxgbAHgIGDDi1drNm8
E8sMsGbdZjq0axnuskREmrzw/wrIMBg14WJe+/f7bFkWjaNZGy7s3CbcVYmINHnhDwAgNqkV
d99zF96qADGxMTgMnQISEQm1iAgAAKfLQ5zLE+4yRERsI2IC4PsEAgGCwep7NS3LYv/+/RQX
F9f681ZVGYGuN4eqPGlARkwLXHl5p/25YFw/zK6JtRrXta8Y40jgO8MrKyvJO8W8q9Ja4z9v
4mnXFukcMdH4jy530O+nspbL6G3RnCNn8LeqD6ZpAvxgdxXhFggEcLl+ePd7srZnWRYT0y6u
cx2GZVlWnacSIpZlcaw8y7IoKysjJiYmZPNrao0nnJpSjQcPHiQl5fT7CApFLeFkWRamaeKs
xz6e6ltT24ZD3fYiusUZhoFx9HqAaZqYponHE7rTRIFA9be/SN8QQ70e6kNTqrGsrIw2bUL7
w4TGsr4CgUBE19nUtuFQt73IjkkREQkZBYCIiE1F9nFSA4vkc5vHi4qKCncJP0g1np5IquVk
DMPA7XaHu4xT0jZ8ehQAxzEayf0HjaFO1Xh6IqmWk1GN9SdS6tQpIBERm1IAnET1T1DDXcWp
Hf8z2UjwffVEWo3fJ5JqjKRaTiXS6jx52wtTQbUU7vVo61NAPm8Zy5d+zY7c3SSndWDChHHE
epxsWbuUpas20apDDy6YeA6uSDhaM33M/+RTOvYdSdd2yfgrS5g1cxZFlUHGTLiQjLapPzyN
ECo5tJd587+gqMLP4OFj6NezEyUHdjPnk/kEnDFc+KNLSE2MDWOFFru2b+arJd9guWIZOWYM
ndu2wldRwuyZMynymoydeCGd0xtiPVrsL8zn66+XUlzup++QEQzq3ZVAVTmfzZnN3qJKzh47
kZ6d0xuglh92qDCXRWt3cNF544hyOynYvon5C5cSn9qOiy+cQKwnvLuRretXsGx1Jp64ZC68
8AJaNIsh85tFrFiXRduM3kwcdzbOsG7DFnlZG1m8fDWGO45RY8fRsU0K3rIjzJ41h1Kfxbnn
XUyHtBYNUsu+glwWf72MUm/Q3kcAqxcuIOBJ4YqrrybJOsi8pWs5uGsrnyzZwuVXX4NxZDtf
rtgU7jLBsliz6DPWbM5i1/4iLMtk9kcfkNR5AD8aP5LpH35Aife7d7A2FDNQybvvfEC3Qecw
6arLaBbrBtPHB+9Noc+I8Yzql8E770/FDOM3HW/pIf4z/TPGXXgpE0YNYOaHH1LmCzD7o/dp
3mUgF48fwcdTplBaVZ9PMv5+ZtDPvFnz6DN0DJdfcj4rP59GYYmPL2dPxUrO4PKLxvPJ1A84
VBH+h8oH/ZV8PG0WWduz8QUsKov38/7H87jg/11Nm+hKZs5bEtb6dmevZd6KbVx6xTWMHzUQ
y7LYl5PJ56tyufLqa6gs3MTiNdlhrbH8yD4+nvMl4y+6lHPP7sv0KVOo8AeY+Z8PaNVjCBeO
HcZHUz6g3Bf6thfwVTJv7pcMGHEul108wd4BMGT8hYwbOZhm8fFERUdjAHnZWxgyejzJSYmM
v2AC2zMzMcN8GFl2uJCvN+7lgjEDATB9XgpLLcYM7knLdhn0bJ/Err2Hwlbf/rxs4tJ70D45
Hn/QQccO6VQe2oOR3JFeGe3o1HMACf4jlPpD38BPxsLC7YkhLjaa2Ph4oqIcBKsq2VNuMHpQ
T1q168JZbZtR0ADr0XC4mXTLLXTtmE5sbBwOpxvDssjbV8y44f1Jbt2Oob3bsz23MOS1nJJl
sXrRZ7TuPZL05DgADuzMJmPASNKSkxg+dhwH87bhC9f2YVmsWvEN554/ESvgI755K5ITY9me
tYmR4ybSPCmR8eeNI3tjuL/EWbijYomLiSY2IQFPlINAZRkHfVGM7N+d1h260aVlNIUHa9/N
zZlyumO49pabyWifRlxsnL1PAbncLvzecr6YO4OcYoMbruvPyjmbSO5S3djdscnEG96w1mgG
fcz6eAYTLrsG58FMMA0CQT84nTWHtS0TE/H7w/dtsayinB2b1jDLe5jKkkMkte/JuF6tiYmL
wWEAhoPU+Bj8ZthKJDq+Bd1axvDCi6/gqDpCr1E/IsoIYLiOW49JifgDoV+P1T+ndHKgIJep
H39MxuAJtG7mJBA0cbucR2tpzgF/eJ+Md2RfHiuyi7jjjsv48P2NAJQUlZCQ1BEAZ1QCzd3B
6i9IYTnFYlFSVsGCOdNJTopn7549XHTVTyktKqFDUjwAUXHJxFIZjuJqxCa2pGOiwT9f+hdW
xUEGjL8Sl+nD4XFx7NlXqYmJNXcxh5JhGLhcDvbt3M5HH8+wdwAEvKX8+7VXaNNrFHdcNgyX
0yA2Ngbf0UMxK1BJhT+8B0k7N65iS2ERLTat5sCeHIr9hXRMHYPzuKemlVV6SQrjz8ocOBg4
YjyXTRyGGajiuf99FceA9gSDR/f4lkVZpS88+4ijivfnkVXsZvK9v8IIVPDm6//m4FmdcBjf
/n1LK7ykGA3z996VvZb3Zn7Fldf8hC7tW2FZJm636+gFQYOySi9GTDjbnsmn06YSE9+GhZ/P
Z1d+AV8vW0aH+Gj8x05VBH2UVYVp33+Uw4hm0g030zLOw97c9cxZnknX2JiaGs1AJZWB8N4b
cKhwG/lVzbj/3luwfOW8/tpbFGVcheO4NVdW4aVFA23D+VtW8cHcJVzz4xvsfQpoxcJPSOs/
kYvGVu/8Adp06Mj6FcsJmCabvllOi05dw9rAW3fty89vv5m+/fqS0bENbTK60So1mWhfCdsK
j+D3lrBpx27SWoa2s7JTSWvXju0b11Lq9RP0V4HDQXxKa4rzsjlQUknp4UIKvU4SPeHbEM2g
H8ty4XAYGA4nFgFwRRHlLWL7niP4KovZnLuH1qmhvxBnmX6mzZzPTbffSZf2rY4ONUjywJa8
PQR8FazNzKZdu3BeBDY4/5obuXjiOPr260tKajLdu3UlrUMnslavwBe0yNuyHkdyGzxh20AM
unZpyddL12NaUFFeTky0h/SOnVi9fBlB0yRz5XJSO3UJV4FAddsDF4Zh4HA4MS0/jqhYHGUH
ydlXjK+iiKxdB2jZona91tZF0F/J1DkLuP1nP6dTempk9wZ6PNM0KS4upnnz5vU2zS9mTmF9
zh5cR3sO7Dv8XMYM7s5n06aQe7AMHB5+cv31NIuJjLsf87NWccBKY3CPdA4X5vDeRzNxGA56
Dh3DmKH9CN9BgMX6ZQtZtHojBtBv5ERG9e/OjswVfLroG6ygybhLrqRXp7Zhq9EM+ln42Sy2
7NyP4Q+Q0XcYE0cP5khhDu9PnYXDcNBr+FhGD+77nRqzs7Pp1q1b/dXiL+X5v72IcbRnW4cr