-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathkruskal-d.cpp
57 lines (50 loc) · 1.19 KB
/
kruskal-d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<ll> vi;
typedef vector<vi> vvi;
const int mod = 1000000007;
const int sze = 100010;
int dr[] = {1, 1, 0, -1, -1, -1, 0, 1};
int dc[] = {0, 1, 1, 1, 0, -1, -1 , -1};
class Graph {
public:
vvi g; //graph g can contain maximum 100 vertices
void addEdge(int u, int v, bool isBidirectonal = true) {
//adds edge from ver u--v
g[u].push_back(v);
if (isBidirectonal) g[v].push_back(u);
}
void clear(){
g.clear();
}
} g;
typedef tuple<int, int, int> edge; //wt, v1, v2
vector<edge> edges;
vector<bool> visited;
//try implementing using Union Find Disjoint Set
int kruskal(){
//gives minimum spanning tree
int ans = 0;
sort(edges.begin(), edges.end());
for(int i = 0; i < (int)edges.size(); ++i){
int u = get<1>(edges[i]);
int v = get<2>(edges[i]);
if (visited[u] && visited[v]) continue;
cout << u << " " << v << endl;
visited[u] = true;
visited[v] = true;
ans += get<0>(edges[i]);
}
return ans;
}
int main() {
freopen("in", "r", stdin);
int n; cin >> n;
int wt ,u, v;
visited.assign(n, false);
while(n-- && cin >> wt >> u >> v){
edges.push_back(make_tuple(wt, u, v));
}
cout << kruskal() << endl;
}