-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy path11838-d.cpp
87 lines (75 loc) · 2.09 KB
/
11838-d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
//the question asks the candidate to check if the whole graph is strongly connected
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<ll> vi;
typedef vector<vi> vvi;
const int mod = 1000000007;
const int sze = 100010;
int dr[] = {1, 1, 0, -1, -1, -1, 0, 1};
int dc[] = {0, 1, 1, 1, 0, -1, -1 , -1};
vvi g; //graph g can contain maximum 100 vertices
void addEdge(int u, int v, bool isBidirectonal) {
//adds edge from ver u--v
g[u].push_back(v);
if (isBidirectonal) g[v].push_back(u);
}
//a graph is said to be strongly connected if there exists a PATH from u->v and v->u
//check for strongly connectedess
int nSCC; //no of strongly connected component
int dfsCnt;
vi discTime; //discTime[x] : discovery time of x
vi low; //low[x] : lowest vertex that can be discovered from x
enum state{UNVISITED = -1};
vector<bool> visited;
stack<int> stk;
bool tarjanSCC(int src) {
visited[src] = true;
discTime[src] = low[src] = dfsCnt++;
stk.push(src);
for (auto ngbr : g[src]) {
//if there exists more than 1 SCC from ngbr then no way to reach src to ngbr in both
//direction
if (visited[ngbr] == false && !tarjanSCC(ngbr)) return false;
low[src] = min(low[src], low[ngbr]);
}
if (low[src] == discTime[src]) {
//this is root of sub-SCC
++nSCC;
// cout << nSCC << ": ";
while (1) {
int v = stk.top();
stk.pop();
visited[v] = false;
// cout << v << " ";
if (src == v) break;
}
// cout << endl;
}
if (nSCC > 1) return false;
return true;
}
int main() {
// freopen("in", "r", stdin);
int n, e, u, v, dir;
while (cin >> n >> e) {
if (n == 0 && e == 0) break;
g.clear();
g.resize(n);
nSCC = 0; //no of strongly connected component
dfsCnt = 0;
discTime.assign(n, UNVISITED); //discTime[x] : discovery time of x
low.assign(n, 0); //low[x] : lowest vertex that can be discovered from x
visited.assign(n, false);
while (e--) {
cin >> u >> v >> dir;
--dir;
addEdge(--u, --v, dir);
}
for (int i = 0; i < n; ++i) {
if (discTime[i] == UNVISITED) tarjanSCC(0);
}
cout << (nSCC == 1) << endl;
// for (auto& x : g) x.clear();
}
}