|
| 1 | +from typing import Union |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import torch |
| 5 | +from PIL import Image |
| 6 | +from ultralytics.engine.results import Results |
| 7 | + |
| 8 | +from datachain.model.ultralytics.bbox import YoloBBox, YoloBBoxes |
| 9 | +from datachain.model.ultralytics.pose import YoloPose, YoloPoses |
| 10 | +from datachain.model.ultralytics.segment import YoloSegment, YoloSegments |
| 11 | + |
| 12 | +YoloSignal = Union[YoloBBox, YoloBBoxes, YoloPose, YoloPoses, YoloSegment, YoloSegments] |
| 13 | + |
| 14 | + |
| 15 | +def _signal_to_results(img: np.ndarray, signal: YoloSignal) -> Results: |
| 16 | + # Convert RGB to BGR |
| 17 | + if img.ndim == 3 and img.shape[2] == 3: |
| 18 | + bgr_array = img[:, :, ::-1] |
| 19 | + else: |
| 20 | + # If the image is not RGB (e.g., grayscale or RGBA), use as is |
| 21 | + bgr_array = img |
| 22 | + |
| 23 | + names = {} |
| 24 | + boxes_list = [] |
| 25 | + keypoints_list = [] |
| 26 | + masks_list = [] |
| 27 | + |
| 28 | + # Get the boxes, keypoints, and masks from the signal |
| 29 | + if isinstance(signal, YoloBBox): |
| 30 | + names[signal.cls] = signal.name |
| 31 | + boxes_list.append( |
| 32 | + torch.tensor([[*signal.box.coords, signal.confidence, signal.cls]]) |
| 33 | + ) |
| 34 | + elif isinstance(signal, YoloBBoxes): |
| 35 | + for i, _ in enumerate(signal.cls): |
| 36 | + names[signal.cls[i]] = signal.name[i] |
| 37 | + boxes_list.append( |
| 38 | + torch.tensor( |
| 39 | + [[*signal.box[i].coords, signal.confidence[i], signal.cls[i]]] |
| 40 | + ) |
| 41 | + ) |
| 42 | + elif isinstance(signal, YoloPose): |
| 43 | + names[signal.cls] = signal.name |
| 44 | + boxes_list.append( |
| 45 | + torch.tensor([[*signal.box.coords, signal.confidence, signal.cls]]) |
| 46 | + ) |
| 47 | + keypoints_list.append( |
| 48 | + torch.tensor([list(zip(signal.pose.x, signal.pose.y, signal.pose.visible))]) |
| 49 | + ) |
| 50 | + elif isinstance(signal, YoloPoses): |
| 51 | + for i, _ in enumerate(signal.cls): |
| 52 | + names[signal.cls[i]] = signal.name[i] |
| 53 | + boxes_list.append( |
| 54 | + torch.tensor( |
| 55 | + [[*signal.box[i].coords, signal.confidence[i], signal.cls[i]]] |
| 56 | + ) |
| 57 | + ) |
| 58 | + keypoints_list.append( |
| 59 | + torch.tensor( |
| 60 | + [ |
| 61 | + list( |
| 62 | + zip( |
| 63 | + signal.pose[i].x, |
| 64 | + signal.pose[i].y, |
| 65 | + signal.pose[i].visible, |
| 66 | + ) |
| 67 | + ) |
| 68 | + ] |
| 69 | + ) |
| 70 | + ) |
| 71 | + elif isinstance(signal, YoloSegment): |
| 72 | + names[signal.cls] = signal.name |
| 73 | + boxes_list.append( |
| 74 | + torch.tensor([[*signal.box.coords, signal.confidence, signal.cls]]) |
| 75 | + ) |
| 76 | + masks_list.append(torch.tensor([list(zip(signal.segment.x, signal.segment.y))])) |
| 77 | + elif isinstance(signal, YoloSegments): |
| 78 | + for i, _ in enumerate(signal.cls): |
| 79 | + names[signal.cls[i]] = signal.name[i] |
| 80 | + boxes_list.append( |
| 81 | + torch.tensor( |
| 82 | + [[*signal.box[i].coords, signal.confidence[i], signal.cls[i]]] |
| 83 | + ) |
| 84 | + ) |
| 85 | + masks_list.append( |
| 86 | + torch.tensor([list(zip(signal.segment[i].x, signal.segment[i].y))]) |
| 87 | + ) |
| 88 | + |
| 89 | + boxes = torch.cat(boxes_list, dim=0) if len(boxes_list) > 0 else None |
| 90 | + keypoints = torch.cat(keypoints_list, dim=0) if len(keypoints_list) > 0 else None |
| 91 | + masks = torch.cat(masks_list, dim=0) if len(masks_list) > 0 else None |
| 92 | + |
| 93 | + return Results( |
| 94 | + bgr_array, |
| 95 | + path="", |
| 96 | + names=names, |
| 97 | + boxes=boxes, |
| 98 | + keypoints=keypoints, |
| 99 | + masks=masks, |
| 100 | + ) |
| 101 | + |
| 102 | + |
| 103 | +def visualize_yolo( |
| 104 | + img: np.ndarray, |
| 105 | + signal: YoloSignal, |
| 106 | + scale: float = 1.0, |
| 107 | + line_width: int = 1, |
| 108 | + font_size: int = 20, |
| 109 | + kpt_radius: int = 3, |
| 110 | +) -> Image.Image: |
| 111 | + """ |
| 112 | + Visualize signals detected by YOLO. |
| 113 | +
|
| 114 | + Args: |
| 115 | + image (ndarray): The image to visualize as a NumPy array. |
| 116 | + signal: The signal detected by YOLO. Possible signals are YoloBBox, YoloBBoxes, |
| 117 | + YoloPose, YoloPoses, YoloSegment, and YoloSegments. |
| 118 | + scale (float): The scale factor for the image. Default is 1.0. |
| 119 | + line_width (int): The line width for drawing boxes and lines. Default is 1. |
| 120 | + font_size (int): The font size for text. Default is 20. |
| 121 | + kpt_radius (int): The radius for drawing keypoints. Default is 3. |
| 122 | +
|
| 123 | + Returns: |
| 124 | + PIL.Image.Image: The image with the detected signals visualized. |
| 125 | + """ |
| 126 | + results = _signal_to_results(img, signal) |
| 127 | + |
| 128 | + im_bgr = results.plot( |
| 129 | + line_width=line_width, |
| 130 | + font_size=font_size, |
| 131 | + kpt_radius=kpt_radius, |
| 132 | + ) |
| 133 | + |
| 134 | + im_rgb = Image.fromarray(im_bgr[..., ::-1]) |
| 135 | + |
| 136 | + if scale != 1.0: |
| 137 | + orig_height, orig_width = results.orig_shape |
| 138 | + new_size = (int(orig_width * scale), int(orig_height * scale)) |
| 139 | + im_rgb = im_rgb.resize(new_size, Image.Resampling.LANCZOS) |
| 140 | + |
| 141 | + return im_rgb |
0 commit comments