-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor.py
51 lines (40 loc) · 1.48 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pickle
from model_trainer import predict
def get_model_data(filename):
try:
model_data = {}
with open(filename, 'rb') as file:
model_data = pickle.load(file)
except FileNotFoundError:
print("Pickled file not found! Please train the model and try again!")
finally:
return model_data
def get_input(prompt):
user_input = None
while not user_input:
user_input = input(prompt)
return user_input
def main():
try:
user_input = get_input("Enter the message: ")
model_data = get_model_data("trained_models/sms_data_model.pkl")
if not (user_input or model_data):
return
vectorizer = model_data["vectorizer"]
scaler = model_data["scaler"]
w_array = model_data["w_array"]
new_message = [user_input]
encoded_new_message = vectorizer.transform(new_message).toarray()
encoded_new_message = scaler.transform(encoded_new_message)
new_prediction = predict(encoded_new_message, w_array)[0]
prediction_statement = "Spam"
if new_prediction < 0.5:
prediction_statement = "Not Spam"
if new_prediction == 0.5:
prediction_statement = "May be spam or not"
print(f"Prediction Value : {new_prediction *100 :.3f} %")
print(f"Prediction Statement : {prediction_statement}")
except KeyboardInterrupt:
print("\nProcess Aborted!")
if __name__ == "__main__":
main()