-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhopfield_network.py
161 lines (146 loc) · 5.34 KB
/
hopfield_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from config import HNConfig as Config
import numpy as np # type: ignore
from matplotlib import pyplot as plt # type: ignore
from matplotlib import cm # type: ignore
from matplotlib import colors # type: ignore
import pandas as pd # type: ignore
import util
window_size = 5
dpi = 100
iter_lim = 1000
record_moment = np.arange(0, iter_lim, 10)
record = True
delta_t = 0.01
noise = 0.001
u_0 = 0.02
param_a = 1.0
param_b = 1.0
param_c = 2.0
param_d = 1.0
@np.vectorize
def sigmoid(input: float) -> float:
sigmoid_range = 34.538776394910684
if input <= -sigmoid_range:
return 1e-15
if input >= sigmoid_range:
return 1.0 - 1e-15
return 1.0 / (1.0 + np.exp(-input / u_0))
def kronecker_delta(i: int, j: int) -> float:
if i == j:
return 1.0
return 0.0
def calc_weight_matrix(city_array: np.array) -> np.array:
city_num: int = city_array.shape[0]
n: int = city_num ** 2
tmp: np.array = np.zeros((n, n))
for s0 in range(n):
x: int = int(s0 / city_num)
i: int = s0 % city_num
for s1 in range(n):
y: int = int(s1 / city_num)
j: int = s1 % city_num
dxy: float = util.dist(city_array[x, :], city_array[y, :])
tmp[s0, s1] = (
-param_a * kronecker_delta(x, y) * (1.0 - kronecker_delta(i, j))
- param_b * kronecker_delta(i, j) * (1.0 - kronecker_delta(x, y))
- param_c
- param_d
* dxy
* (
kronecker_delta(j, (i - 1) % city_num)
+ kronecker_delta(j, (i + 1) % city_num)
)
)
return tmp
def calc_bias(city_array: np.array) -> np.array:
city_num: int = city_array.shape[0]
n: int = city_num ** 2
tmp: np.array = param_c * city_num * np.ones(n)
return tmp
def update_inner_vals(
nodes_array: np.matrix,
inner_vals: np.matrix,
weight_matrix: np.matrix,
biases: np.matrix,
) -> np.matrix:
tau = 1.0
asdf: np.matrix = np.matmul(weight_matrix, nodes_array)
delta: np.matrix = (-inner_vals / tau + asdf + biases) * delta_t
return inner_vals + delta
def hp_begin(
inner_vals_array: np.matrix,
nodes_array: np.matrix,
weights_matrix: np.matrix,
biases_array: np.matrix,
) -> None:
if record:
dir_name: str = util.make_directory(Config)
for i in range(iter_lim):
if i in record_moment:
filename: str = "iteration-" + str(i) + ".png"
file_path: str = dir_name + filename
plt.savefig(file_path)
inner_vals_array = update_inner_vals(
nodes_array, inner_vals_array, weights_matrix, biases_array
)
nodes_array = sigmoid(inner_vals_array)
plt.title("iteration=" + str(i + 1))
mat_visual.set_data(np.reshape(nodes_array, (city_num, city_num)))
plt.pause(0.0001)
else:
i = 1
# while plt.get_fignums():
# inner_vals_array = update_inner_vals(nodes_array, inner_vals_array, weights_matrix, biases_array)
# nodes_array = sigmoid(inner_vals_array)
# plt.title("iteration=" + str(i))
# mat_visual.set_data(np.reshape(nodes_array, (city_num, city_num)))
# i += 1
# plt.pause(.01)
while plt.get_fignums():
# print(nodes_array.shape, inner_vals_array.shape, weights_matrix.shape, biases_array.shape)
inner_vals_array = update_inner_vals(
nodes_array, inner_vals_array, weights_matrix, biases_array
)
nodes_array = sigmoid(inner_vals_array)
plt.title("iteration=" + str(i))
mat_visual.set_data(np.reshape(nodes_array, (city_num, city_num)))
i += 1
plt.pause(0.0001)
if __name__ == "__main__":
if Config.read_file:
np_cities = np.genfromtxt(Config.file_path + Config.city_file, delimiter=",")
city_num = np_cities.shape[0]
# width_x = (np.max(np_cities[:, 0]) - np.min(np_cities[:, 0]))
# width_y = (np.max(np_cities[:, 1]) - np.min(np_cities[:, 1]))
# width = np.amax([width_x, width_y])
# np_cities[:, 0] -= np.min(np_cities[:, 0])
# np_cities[:, 0] /= width
# np_cities[:, 1] -= np.min(np_cities[:, 1])
# np_cities[:, 1] /= width
# center_x = np.average(np_cities[:, 0])
# center_y = np.average(np_cities[:, 1])
figsize = (window_size, window_size)
else:
city_num = Config.city_num
# “continuous uniform” distribution random
np_cities = np.random.random((city_num, 2))
center_x = 0.5
center_y = 0.5
figsize = (window_size, window_size)
inner_vals = np.matrix((np.random.random((city_num ** 2)) - 0.5) * noise).T
nodes = np.matrix(sigmoid(inner_vals))
weights = np.matrix(calc_weight_matrix(np_cities))
df = pd.DataFrame(weights)
df.to_csv("weigths.csv", header=False, index=False)
biases = np.matrix(calc_bias(np_cities)).T
fig = plt.figure(figsize=figsize, dpi=dpi)
mat_visual = plt.matshow(
np.reshape(nodes, (city_num, city_num)),
fignum=0,
cmap=cm.Greys,
norm=colors.Normalize(vmin=0.0, vmax=1.0),
)
fig.colorbar(mat_visual)
plt.title("iteration=" + str(0))
plt.pause(0.0001)
hp_begin(inner_vals, nodes, weights, biases)