-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathagc-coffea-2024.py
408 lines (320 loc) · 14.9 KB
/
agc-coffea-2024.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# ---
# jupyter:
# jupytext:
# notebook_metadata_filter: all,-jupytext.text_representation.jupytext_version
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# language_info:
# codemirror_mode:
# name: ipython
# version: 3
# file_extension: .py
# mimetype: text/x-python
# name: python
# nbconvert_exporter: python
# pygments_lexer: ipython3
# version: 3.12.8
# ---
# %% [markdown]
# # AGC + calver coffea on coffea-casa
#
# We'll base this on a few sources:
# - https://github.com/iris-hep/analysis-grand-challenge/tree/main/analyses/cms-open-data-ttbar (AGC, of course)
# - https://github.com/alexander-held/CompHEP-2023-AGC (contains a simplified version of AGC)
# - https://github.com/nsmith-/TTGamma_LongExercise/ (credit Nick Smith for helpful examples of the new API)
# - (and if time allows, weight features: https://github.com/CoffeaTeam/coffea/blob/backports-v0.7.x/binder/accumulators.ipynb / https://coffeateam.github.io/coffea/api/coffea.analysis_tools.Weights.html#coffea.analysis_tools.Weights.partial_weight)
# %%
from pathlib import Path
import awkward as ak
import dask
import dask_awkward as dak
import hist.dask
import coffea
import numpy as np
import uproot
from dask.distributed import Client
import cloudpickle
import matplotlib.pyplot as plt
from coffea.nanoevents import NanoEventsFactory, NanoAODSchema
from coffea.analysis_tools import PackedSelection
from coffea import dataset_tools
import correctionlib
import warnings
import utils
from utils.systematics import rand_gauss
utils.plotting.set_style()
warnings.filterwarnings("ignore")
NanoAODSchema.warn_missing_crossrefs = False # silences warnings about branches we will not use here
client = Client("tls://localhost:8786")
print(f"awkward: {ak.__version__}")
print(f"dask-awkward: {dak.__version__}")
print(f"uproot: {uproot.__version__}")
print(f"hist: {hist.__version__}")
print(f"coffea: {coffea.__version__}")
# %% [markdown]
# ### Produce an AGC histogram with Dask (no coffea yet)
# %%
def calculate_trijet_mass(events):
# pT > 30 GeV for leptons, > 25 GeV for jets
selected_electrons = events.Electron[(events.Electron.pt > 30) & (np.abs(events.Electron.eta) < 2.1)]
selected_muons = events.Muon[(events.Muon.pt > 30) & (np.abs(events.Muon.eta) < 2.1)]
selected_jets = events.Jet[(events.Jet.pt > 25) & (np.abs(events.Jet.eta) < 2.4)]
# single lepton requirement
event_filters = ((ak.count(selected_electrons.pt, axis=1) + ak.count(selected_muons.pt, axis=1)) == 1)
# at least four jets
event_filters = event_filters & (ak.count(selected_jets.pt, axis=1) >= 4)
# at least two b-tagged jets ("tag" means score above threshold)
B_TAG_THRESHOLD = 0.5
event_filters = event_filters & (ak.sum(selected_jets.btagCSVV2 > B_TAG_THRESHOLD, axis=1) >= 2)
# apply filters
selected_jets = selected_jets[event_filters]
trijet = ak.combinations(selected_jets, 3, fields=["j1", "j2", "j3"]) # trijet candidate
trijet["p4"] = trijet.j1 + trijet.j2 + trijet.j3 # four-momentum of tri-jet system
trijet["max_btag"] = np.maximum(trijet.j1.btagCSVV2, np.maximum(trijet.j2.btagCSVV2, trijet.j3.btagCSVV2))
trijet = trijet[trijet.max_btag > B_TAG_THRESHOLD] # at least one-btag in trijet candidates
# pick trijet candidate with largest pT and calculate mass of system
trijet_mass = trijet["p4"][ak.argmax(trijet.p4.pt, axis=1, keepdims=True)].mass
return ak.flatten(trijet_mass)
# %% [markdown]
# Reading in the ROOT file, we can now create a Dask task graph for the calculations and plot that we want to make using `dask-awkward` and `hist.dask`
# %%
ttbar_file = "https://xrootd-local.unl.edu:1094//store/user/AGC/nanoAOD/"\
"TT_TuneCUETP8M1_13TeV-powheg-pythia8/cmsopendata2015_ttbar_19981_PU25nsData2015v1_76X_"\
"mcRun2_asymptotic_v12_ext4-v1_80000_0007.root"
events = NanoEventsFactory.from_root({ttbar_file: "Events"}, schemaclass=NanoAODSchema).events()
# create the task graph to build a histogram
reconstructed_top_mass = calculate_trijet_mass(events)
hist_reco_mtop = hist.dask.Hist.new.Reg(16, 0, 375, label="$m_{bjj}$").Double().fill(reconstructed_top_mass)
# %% [markdown]
# and then once we're ready we can execute the task graph with `.compute()` to get our visualization
# %%
# perform computation and visualize
artists = hist_reco_mtop.compute().plot()
# %%
# and annotate the visualization
fig_dir = Path.cwd() / "figures"
fig_dir.mkdir(parents=True, exist_ok=True)
ax = artists[0].stairs.axes
fig = ax.get_figure()
ax.vlines(175, 0, 10000, colors=["grey"], linestyle="dotted")
ax.text(180, 150, "$m_{t} = 175$ GeV")
ax.set_xlim([0, 375])
ax.set_ylim([0, 8000])
fig.savefig(fig_dir / "trijet_mass.png", dpi=300)
fig
# %% [markdown]
# This all matches the (non-Dask) versions of the plots from last summer — see the notebook linked above. Not surprising, but reassuring!
#
# ### Time for coffea
#
# We'll first write the functions to compute the observable and do the histogramming using `awkward-dask` and `hist.dask` again
# %%
B_TAG_THRESHOLD = 0.5
cset = correctionlib.CorrectionSet.from_file("corrections.json")
# perform object selection
def object_selection(elecs, muons, jets):
electron_reqs = (elecs.pt > 30) & (np.abs(elecs.eta) < 2.1) & (elecs.cutBased == 4) & (elecs.sip3d < 4)
muon_reqs = ((muons.pt > 30) & (np.abs(muons.eta) < 2.1) & (muons.tightId) & (muons.sip3d < 4) &
(muons.pfRelIso04_all < 0.15))
jet_reqs = (jets.pt > 30) & (np.abs(jets.eta) < 2.4) & (jets.isTightLeptonVeto)
# Only keep objects that pass our requirements
elecs = elecs[electron_reqs]
muons = muons[muon_reqs]
jets = jets[jet_reqs]
return elecs, muons, jets
# event selection for 4j1b and 4j2b
def region_selection(elecs, muons, jets):
######### Store boolean masks with PackedSelection ##########
selections = PackedSelection(dtype='uint64')
# Basic selection criteria
selections.add("exactly_1l", (ak.num(elecs) + ak.num(muons)) == 1)
selections.add("atleast_4j", ak.num(jets) >= 4)
selections.add("exactly_1b", ak.sum(jets.btagCSVV2 > B_TAG_THRESHOLD, axis=1) == 1)
selections.add("atleast_2b", ak.sum(jets.btagCSVV2 > B_TAG_THRESHOLD, axis=1) >= 2)
# Complex selection criteria
selections.add("4j1b", selections.all("exactly_1l", "atleast_4j", "exactly_1b"))
selections.add("4j2b", selections.all("exactly_1l", "atleast_4j", "atleast_2b"))
return selections
# observable calculation for 4j2b
def calculate_m_reco_top(jets):
# reconstruct hadronic top as bjj system with largest pT
trijet = ak.combinations(jets, 3, fields=["j1", "j2", "j3"]) # trijet candidates
trijet["p4"] = trijet.j1 + trijet.j2 + trijet.j3 # four-momentum of tri-jet system
trijet["max_btag"] = np.maximum(trijet.j1.btagCSVV2,
np.maximum(trijet.j2.btagCSVV2, trijet.j3.btagCSVV2))
trijet = trijet[trijet.max_btag > B_TAG_THRESHOLD] # at least one-btag in candidates
# pick trijet candidate with largest pT and calculate mass of system
trijet_mass = trijet["p4"][ak.argmax(trijet.p4.pt, axis=1, keepdims=True)].mass
observable = ak.flatten(trijet_mass)
return observable
# create histograms with observables
def create_histograms(events):
hist_4j1b = (
hist.dask.Hist.new.Reg(25, 50, 550, name="HT", label=r"$H_T$ [GeV]")
.StrCat([], name="process", label="Process", growth=True)
.StrCat([], name="variation", label="Systematic variation", growth=True)
.Weight()
)
hist_4j2b = (
hist.dask.Hist.new.Reg(25, 50, 550, name="m_reco_top", label=r"$m_{bjj}$ [GeV]")
.StrCat([], name="process", label="Process", growth=True)
.StrCat([], name="variation", label="Systematic variation", growth=True)
.Weight()
)
hist_dict = {"4j1b": hist_4j1b, "4j2b": hist_4j2b}
process = events.metadata["process"] # "ttbar" etc.
variation = events.metadata["variation"] # "nominal" etc.
process_label = events.metadata["process_label"] # nicer LaTeX labels
# normalization for MC
x_sec = events.metadata["xsec"]
nevts_total = events.metadata["nevts"]
lumi = 3378 # /pb
if process != "data":
xsec_weight = x_sec * lumi / nevts_total
else:
xsec_weight = 1
events["pt_scale_up"] = 1.03
events["pt_res_up"] = dak.map_partitions(rand_gauss, events.Jet.pt)
syst_variations = ["nominal"]
jet_kinematic_systs = ["pt_scale_up", "pt_res_up"]
event_systs = [f"btag_var_{i}" for i in range(4)]
if process == "wjets":
event_systs.append("scale_var")
if variation == "nominal":
syst_variations.extend(jet_kinematic_systs)
syst_variations.extend(event_systs)
for syst_var in syst_variations:
elecs = events.Electron
muons = events.Muon
jets = events.Jet
if syst_var in jet_kinematic_systs:
jets["pt"] = jets.pt * events[syst_var]
elecs, muons, jets = object_selection(elecs, muons, jets)
# region selection
selections = region_selection(elecs, muons, jets)
for region in hist_dict:
selection = selections.all(region)
region_jets = jets[selection]
region_weights = dak.ones_like(dak.num(region_jets, axis=1)) * xsec_weight
if region == "4j1b":
observable = ak.sum(region_jets.pt, axis=-1)
elif region == "4j2b":
observable = calculate_m_reco_top(region_jets)
syst_var_name = f"{syst_var}"
if syst_var in event_systs:
for i_dir, direction in enumerate(["up", "down"]):
if syst_var == "scale_var":
wgt_variation = cset["event_systematics"].evaluate("scale_var", direction, region_jets.pt[:, 0])
elif syst_var.startswith("btag_var"):
i_jet = int(syst_var.rsplit("_",1)[-1])
wgt_variation = cset["event_systematics"].evaluate("btag_var", direction, region_jets.pt[:,i_jet])
syst_var_name = f"{syst_var}_{direction}"
hist_dict[region].fill(
observable,
process=process_label,
variation=syst_var_name,
weight=region_weights * wgt_variation,
)
else:
if variation != "nominal":
syst_var_name = variation
hist_dict[region].fill(
observable,
process=process_label,
variation=syst_var_name,
weight=region_weights,
)
return hist_dict
# %% [markdown]
# and prepare the fileset we need
# %%
# fileset preparation
N_FILES_MAX_PER_SAMPLE = 1
# compared to coffea 0.7: list of file paths becomes list of dicts (path: trename)
fileset = utils.file_input.construct_fileset(N_FILES_MAX_PER_SAMPLE)
# fileset = {"ttbar__nominal": fileset["ttbar__nominal"]} # to only process nominal ttbar
# fileset
# %% [markdown]
# Now we can start using `coffea` with its Dask capabilities. One of the things we need to do is to build the full task graph, which requires looping over all the sample variations (`samples`)
# %%
# %%time
# pre-process
samples, _ = dataset_tools.preprocess(fileset, step_size=250_000)
# workaround for https://github.com/CoffeaTeam/coffea/issues/1050 (metadata gets dropped, already fixed)
for k, v in samples.items():
v["metadata"] = fileset[k]["metadata"]
# %%
# %%time
cloudpickle.register_pickle_by_value(utils) # serialize methods and objects in utils so that they can be accessed within the coffea processor
# create the task graph
tasks = dataset_tools.apply_to_fileset(create_histograms, samples, uproot_options={"allow_read_errors_with_report": True})
# %% [markdown]
# and then we can finally execute the full task graph with Dask
# %%
# %%time
# execute
((out, report),) = dask.compute(tasks) # feels strange that this is a tuple-of-tuple
print(f"total time spent in uproot reading data (or some related metric?): {ak.sum([v['duration'] for v in report.values()]):.2f} s")
# %% [markdown]
# To visualize the results, we need to first stack the serperate histograms that were computed individually
# %%
# stack all the histograms together (we processed each sample separately)
full_histogram_4j1b = sum([v["4j1b"] for v in out.values()])
full_histogram_4j2b = sum([v["4j2b"] for v in out.values()])
# %%
artists = full_histogram_4j1b[120j::hist.rebin(2), :, "nominal"].stack("process")[::-1].plot(
stack=True, histtype="fill", linewidth=1,edgecolor="grey"
)
ax = artists[0].stairs.axes
fig = ax.get_figure()
ax.legend(frameon=False)
ax.set_title(">= 4 jets, 1 b-tag");
fig.savefig(fig_dir / "coffea_4j_1b.png", dpi=300)
# %%
artists = full_histogram_4j2b[:, :, "nominal"].stack("process")[::-1].plot(
stack=True, histtype="fill", linewidth=1,edgecolor="grey"
)
ax = artists[0].stairs.axes
fig = ax.get_figure()
ax.legend(frameon=False)
ax.set_title(">= 4 jets, >= 2 b-tags");
fig.savefig(fig_dir / "coffea_4j_2b.png", dpi=300)
# %%
# b-tagging variations
ttbar_label = '$t\\bar{t}$'
full_histogram_4j1b[120j::hist.rebin(2), ttbar_label, "nominal"].plot(label="nominal", linewidth=2)
full_histogram_4j1b[120j::hist.rebin(2), ttbar_label, "btag_var_0_up"].plot(label="NP 1", linewidth=2)
full_histogram_4j1b[120j::hist.rebin(2), ttbar_label, "btag_var_1_up"].plot(label="NP 2", linewidth=2)
full_histogram_4j1b[120j::hist.rebin(2), ttbar_label, "btag_var_2_up"].plot(label="NP 3", linewidth=2)
full_histogram_4j1b[120j::hist.rebin(2), ttbar_label, "btag_var_3_up"].plot(label="NP 4", linewidth=2)
plt.legend(frameon=False)
plt.xlabel("$H_T$ [GeV]")
plt.title("b-tagging variations");
# %%
# jet energy scale variations
full_histogram_4j2b[:, ttbar_label, "nominal"].plot(label="nominal", linewidth=2)
full_histogram_4j2b[:, ttbar_label, "pt_scale_up"].plot(label="scale up", linewidth=2)
full_histogram_4j2b[:, ttbar_label, "pt_res_up"].plot(label="resolution up", linewidth=2)
plt.legend(frameon=False)
plt.xlabel("$m_{bjj}$ [Gev]")
plt.title("Jet energy variations");
# %% [markdown]
# This is a plot you can compare to the one in the full AGC notebook — you'll notice they look the same. Success!
#
# If we now investigate the task graph for the nominal $t\bar{t}$ sample in the optimzied view, which hides from us some of the complexity of the graph we created.
# %%
tasks[0]["ttbar__nominal"]["4j2b"].visualize(optimize_graph=True)
# %%
# "100 layers is a large task graph" on IRIS-HEP Slack, 100 layers happen quickly!
for region in ["4j1b", "4j2b"]:
for process, task in tasks[0].items():
print(f"{process:>30} {region} {len(task[region].dask.layers)}")
# %%
# columns getting read for a given task
dak.necessary_columns(tasks[0]["ttbar__nominal"]["4j2b"])