-
-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy paththroughput.py
71 lines (57 loc) · 1.55 KB
/
throughput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import time
import numpy as np
import ipyparallel as parallel
nlist = map(int, np.logspace(2, 9, 16, base=2))
nlist2 = map(int, np.logspace(2, 8, 15, base=2))
tlist = map(int, np.logspace(7, 22, 16, base=2))
nt = 16
def wait(t=0):
import time
time.sleep(t)
def echo(s=''):
return s
def time_throughput(nmessages, t=0, f=wait):
client = parallel.Client()
view = client.load_balanced_view()
# do one ping before starting timing
if f is echo:
t = np.random.random(t / 8)
view.apply_sync(echo, '')
client.spin()
tic = time.time()
for i in range(nmessages):
view.apply(f, t)
lap = time.time()
client.wait()
toc = time.time()
return lap - tic, toc - tic
def do_runs(nlist, t=0, f=wait, trials=2, runner=time_throughput):
A = np.zeros((len(nlist), 2))
for i, n in enumerate(nlist):
t1 = t2 = 0
for _ in range(trials):
time.sleep(0.25)
ts = runner(n, t, f)
t1 += ts[0]
t2 += ts[1]
t1 /= trials
t2 /= trials
A[i] = (t1, t2)
A[i] = n / A[i]
print(n, A[i])
return A
def do_echo(n, tlist=[0], f=echo, trials=2, runner=time_throughput):
A = np.zeros((len(tlist), 2))
for i, t in enumerate(tlist):
t1 = t2 = 0
for _ in range(trials):
time.sleep(0.25)
ts = runner(n, t, f)
t1 += ts[0]
t2 += ts[1]
t1 /= trials
t2 /= trials
A[i] = (t1, t2)
A[i] = n / A[i]
print(t, A[i])
return A