Skip to content

Commit aee3d8f

Browse files
authored
clean underperforming models (#2563)
1 parent 8518549 commit aee3d8f

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+37
-4329
lines changed

README.md

-2
Original file line numberDiff line numberDiff line change
@@ -70,14 +70,12 @@ For best performance on Intel® Data Center GPU Flex and Max Series, please chec
7070
| [BERT large](https://arxiv.org/pdf/1810.04805.pdf) [Sapphire Rapids](https://www.intel.com/content/www/us/en/newsroom/opinion/updates-next-gen-data-center-platform-sapphire-rapids.html#gs.blowcx) | Tensorflow | Training | [FP32 BFloat16 BFloat32](/quickstart/language_modeling/tensorflow/bert_large/training/cpu/README.md) | [SQuAD](https://github.com/IntelAI/models/tree/master/datasets/bert_data/README.md#inference) |
7171
| [BERT large (Hugging Face)](https://arxiv.org/pdf/1810.04805.pdf) | TensorFlow | Inference | [FP32 FP16 BFloat16 BFloat32](/benchmarks/language_modeling/tensorflow/bert_large_hf/inference/README.md) | [SQuAD](https://github.com/IntelAI/models/tree/master/datasets/bert_data/README.md#inference) |
7272
| [BERT large](https://arxiv.org/pdf/1810.04805.pdf) | PyTorch | Inference | [FP32 Int8 BFloat16 BFloat32](/models_v2/pytorch/bert_large/inference/cpu/README.md) | BERT Large SQuAD1.1 |
73-
| [BERT large](https://arxiv.org/pdf/1810.04805.pdf) | PyTorch | Training | [FP32 BFloat16 BFloat32](/models_v2/pytorch/bert_large/training/cpu/README.md) | [preprocessed text dataset](https://drive.google.com/drive/folders/1cywmDnAsrP5-2vsr8GDc6QUc7VWe-M3v) |
7473
| [DistilBERT base](https://arxiv.org/abs/1910.01108) | PyTorch | Inference | [FP32 BF32 BF16Int8-FP32 Int8-BFloat16 BFloat32](/models_v2/pytorch/distilbert/inference/cpu/README.md) | [ DistilBERT Base SQuAD1.1](https://huggingface.co/distilbert-base-uncased-distilled-squad) |
7574
| [RNN-T](https://arxiv.org/abs/2007.15188) | PyTorch | Inference | [FP32 BFloat16 BFloat32](/models_v2/pytorch/rnnt/inference/cpu/README.md) | [RNN-T dataset](/models_v2/pytorch/rnnt/inference/cpu/download_dataset.sh) |
7675
| [RNN-T](https://arxiv.org/abs/2007.15188) | PyTorch | Training | [FP32 BFloat16 BFloat32](/models_v2/pytorch/rnnt/training/cpu/README.md) | [RNN-T dataset](/models_v2/pytorch/rnnt/training/cpu/download_dataset.sh) |
7776
| [GPTJ 6B](https://huggingface.co/EleutherAI/gpt-j-6b) | PyTorch | Inference | [FP32 FP16 BFloat16 BF32 INT8](/models_v2/pytorch/gptj/inference/cpu/README.md) | |
7877
| [GPTJ 6B MLPerf](https://github.com/mlcommons/inference/tree/master/language/gpt-j#datasets--models) | PyTorch | Inference | [INT4](/models_v2/pytorch/gpt-j_mlperf/inference/cpu/README.md) | [CNN-Daily Mail dataset](https://huggingface.co/datasets/cnn_dailymail)|
7978
| [LLAMA2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) | PyTorch | Inference | [FP32 FP16 BFloat16 BF32 INT8](/models_v2/pytorch/llama/inference/cpu/README.md) | |
80-
| [LLAMA2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) | PyTorch | Training | [FP32 FP16 BFloat16 BF32](/models_v2/pytorch/llama/training/cpu/README.md) | |
8179
| [LLAMA2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf) | PyTorch | Inference | [FP32 FP16 BFloat16 BF32 INT8](/models_v2/pytorch/llama/inference/cpu/README.md) | |
8280
| [ChatGLMv3 6B](https://huggingface.co/THUDM/chatglm3-6b) | PyTorch | Inference | [FP32 FP16 BFloat16 BF32 INT8](/models_v2/pytorch/chatglm/inference/cpu/README.md) | |
8381

docker/pytorch/docker-compose.yml

+18-18
Original file line numberDiff line numberDiff line change
@@ -32,15 +32,15 @@ services:
3232
dockerfile: docker/pytorch/bert_large/inference/cpu/pytorch-bert-large-inference.Dockerfile-${BASE_IMAGE_NAME:-ubuntu}
3333
command: >
3434
bash -c "python -c 'import torch; import intel_extension_for_pytorch as ipex; print(\"torch:\", torch.__version__, \" ipex:\",ipex.__version__)'"
35-
bert_large-training-cpu:
36-
image: ${REGISTRY}/aiops/mlops-ci:b-${GITHUB_RUN_NUMBER:-0}-${BASE_IMAGE_NAME:-ubuntu}-${BASE_IMAGE_TAG:-22.04}-language-modeling-bert-large-training
37-
pull_policy: always
38-
build:
39-
context: ../../
40-
dockerfile: docker/pytorch/bert_large/training/cpu/pytorch-bert-large-training.Dockerfile-${BASE_IMAGE_NAME:-ubuntu}
41-
extends: bert_large-inference-cpu
42-
command: >
43-
bash -c "python -c 'import torch; import intel_extension_for_pytorch as ipex; print(\"torch:\", torch.__version__, \" ipex:\",ipex.__version__)'"
35+
# bert_large-training-cpu:
36+
# image: ${REGISTRY}/aiops/mlops-ci:b-${GITHUB_RUN_NUMBER:-0}-${BASE_IMAGE_NAME:-ubuntu}-${BASE_IMAGE_TAG:-22.04}-language-modeling-bert-large-training
37+
# pull_policy: always
38+
# build:
39+
# context: ../../
40+
# dockerfile: docker/pytorch/bert_large/training/cpu/pytorch-bert-large-training.Dockerfile-${BASE_IMAGE_NAME:-ubuntu}
41+
# extends: bert_large-inference-cpu
42+
# command: >
43+
# bash -c "python -c 'import torch; import intel_extension_for_pytorch as ipex; print(\"torch:\", torch.__version__, \" ipex:\",ipex.__version__)'"
4444
maskrcnn-inference-cpu:
4545
image: ${REGISTRY}/aiops/mlops-ci:b-${GITHUB_RUN_NUMBER:-0}-${BASE_IMAGE_NAME:-ubuntu}-${BASE_IMAGE_TAG:-22.04}-object-detection-maskrcnn-inference
4646
pull_policy: always
@@ -185,15 +185,15 @@ services:
185185
extends: bert_large-inference-cpu
186186
command: >
187187
bash -c "python -c 'import torch; import intel_extension_for_pytorch as ipex; print(\"torch:\", torch.__version__, \" ipex:\",ipex.__version__)'"
188-
llama-training-cpu:
189-
image: ${REGISTRY}/aiops/mlops-ci:b-${GITHUB_RUN_NUMBER:-0}-${BASE_IMAGE_NAME:-ubuntu}-${BASE_IMAGE_TAG:-22.04}-generative-ai-llama-training
190-
pull_policy: always
191-
build:
192-
context: ../../
193-
dockerfile: docker/pytorch/llama/training/cpu/pytorch-llama-training.Dockerfile-${BASE_IMAGE_NAME:-ubuntu}
194-
extends: bert_large-inference-cpu
195-
command: >
196-
bash -c "python -c 'import torch; import intel_extension_for_pytorch as ipex; print(\"torch:\", torch.__version__, \" ipex:\",ipex.__version__)'"
188+
# llama-training-cpu:
189+
# image: ${REGISTRY}/aiops/mlops-ci:b-${GITHUB_RUN_NUMBER:-0}-${BASE_IMAGE_NAME:-ubuntu}-${BASE_IMAGE_TAG:-22.04}-generative-ai-llama-training
190+
# pull_policy: always
191+
# build:
192+
# context: ../../
193+
# dockerfile: docker/pytorch/llama/training/cpu/pytorch-llama-training.Dockerfile-${BASE_IMAGE_NAME:-ubuntu}
194+
# extends: bert_large-inference-cpu
195+
# command: >
196+
# bash -c "python -c 'import torch; import intel_extension_for_pytorch as ipex; print(\"torch:\", torch.__version__, \" ipex:\",ipex.__version__)'"
197197
vit-inference-cpu:
198198
image: ${REGISTRY}/aiops/mlops-ci:b-${GITHUB_RUN_NUMBER:-0}-${BASE_IMAGE_NAME:-ubuntu}-${BASE_IMAGE_TAG:-22.04}-image-recognition-vit-inference
199199
pull_policy: always

docs/general/CPU_DEVCATALOG.md

-2
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,6 @@ The tables below link to documentation on how to run each use case using docker
1313
| --------| ------------------------------------------------------ | ---------- | ------| --------------------- |
1414
| PyTorch | [GPT-J](../../models_v2/pytorch/gptj/inference/cpu/CONTAINER.md) | FP32,BF32,BF16,FP16,INT8-FP32 | Inference | LAMBADA |
1515
| PyTorch | [Llama 2](../../models_v2/pytorch/llama/inference/cpu/CONTAINER.md) 7B,13B | FP32,BF32,BF16,FP16,INT8-FP32 | Inference | LAMBADA |
16-
| PyTorch | [Llama 2](../../models_v2/pytorch/llama/training/cpu/CONTAINER.md) 7B | FP32,BF32,BF16,FP16 | Training | LAMBADA |
1716
| PyTorch | [ChatGLM](../../models_v2/pytorch/chatglm/inference/cpu/CONTAINER.md) | FP32,BF32,BF16,FP16,INT8-FP32 | Inference | LAMBADA |
1817
| PyTorch | [LCM](../../models_v2/pytorch/LCM/inference/cpu/CONTAINER.md) | FP32,BF32,BF16,FP16,INT8-FP32,INT8-BF16 | Inference | COCO 2017 |
1918
| PyTorch | [Stable Diffusion](../../models_v2/pytorch/stable_diffusion/inference/cpu/CONTAINER.md) | FP32,BF32,BF16,FP16,INT8-FP32,INT8-BF16 | Inference | COCO 2017 |
@@ -40,7 +39,6 @@ The tables below link to documentation on how to run each use case using docker
4039

4140
| Framework | Model | Precisions | Mode | Dataset |
4241
| --------| ------------------------------------------------------ | ---------- | ------| --------------------- |
43-
| PyTorch | [BERT large](../../models_v2/pytorch/bert_large/training/cpu/CONTAINER.md) | FP32,BF32,BF16,FP16 | Training | Preprocessed Text dataset |
4442
| PyTorch |[BERT large](../../models_v2/pytorch/bert_large/inference/cpu/CONTAINER.md) | FP32,BF32,BF16,INT8 | Inference | SQuAD1.0 |
4543
| PyTorch | [RNN-T](../../models_v2/pytorch/rnnt/training/cpu/CONTAINER.md) | FP32,BF32,BF16,INT8 | Inference | LibriSpeech |
4644
| PyTorch |[RNN-T](../../models_v2/pytorch/rnnt/inference/cpu/CONTAINER.md) | FP32,BF32,FP16 | Training | LibriSpeech |

models_v2/pytorch/bert_large/inference/cpu/CONTAINER.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ To run the BERT Large inference scripts, set environment variables to specify th
4545
```bash
4646
export EVAL_DATA_FILE=<path to the eval data>
4747
export OUTPUT_DIR=<directory where log files will be written>
48-
export PRECISION=<specify the precision>
48+
export PRECISION=<provide bf16, fp32, fp16, int8, avx-int8, avx-fp32 for throughput and bf16, bf32, fp32, fp16, int8, avx-fp32, avx-int8, fp8 for accuracy and realtime>
4949
export FINETUNED_MODELL=<path to pre-trained model>
5050
export TEST_MODE=<provide either REALTIME,THROUGHPUT OR ACCURACY mode>
5151
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX_FP16 (for FP16 precision)

models_v2/pytorch/bert_large/inference/cpu/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,7 @@ export FINETUNED_MODEL=$(pwd)/bert_squad_model
9595
| **TEST_MODE** (THROUGHPUT, ACCURACY, REALTIME) | `export TEST_MODE=THROUGHPUT (THROUGHPUT, ACCURACY, REALTIME)` |
9696
| **EVAL_DATA_FILE** | `export EVAL_DATA_FILE=<path to dev-v1.1.json file>` |
9797
| **OUTPUT_DIR** | `export OUTPUT_DIR=<path to an output directory>` |
98-
| **PRECISION** | `export PRECISION=bf16` (bf16, bf32, fp32, fp16, int8, avx-int8, avx-fp32 for throughput and bf16, bf32, fp32, fp16, int8, avx-fp32, avx-int8, fp8 for accuracy) |
98+
| **PRECISION** | `export PRECISION=bf16` (bf16, fp32, fp16, int8, avx-int8, avx-fp32 for throughput and bf16, bf32, fp32, fp16, int8, avx-fp32, avx-int8, fp8 for accuracy and realtime) |
9999
| **FINETUNED_MODEL** | `export FINETUNED_MODEL=<path to the fine tuned model>` |
100100
| **MODEL_DIR** | `export MODEL_DIR=$(pwd)` |
101101
| **BATCH_SIZE** (optional) | `export BATCH_SIZE=<set a value for batch size, else it will run with default batch size>` |

models_v2/pytorch/bert_large/training/cpu/CONTAINER.md

-96
This file was deleted.

0 commit comments

Comments
 (0)