@@ -47,10 +47,10 @@ $ git clone https://github.com/IntelAI/models.git
47
47
The optimized ResNet50v1.5 model files are attached to the [ intelai/models] ( https://github.com/intelai/models ) repo and
48
48
located at ` models/models/image_recognition/tensorflow/resnet50v1_5/ ` .
49
49
50
- The docker image (`intel/intel-optimized-tensorflow:2.2 .0`)
50
+ The docker image (`intel/intel-optimized-tensorflow:2.3 .0`)
51
51
used in the commands above were built using
52
52
[TensorFlow](https://github.com/tensorflow/tensorflow.git) master for TensorFlow
53
- version 2.2 .0.
53
+ version 2.3 .0.
54
54
55
55
* Calculate the model accuracy, the required parameters parameters include: the ` ImageNet ` dataset location (from step 1),
56
56
the pre-trained ` resnet50v1_5_int8_pretrained_model.pb ` input graph file (from step 2), and the ` --accuracy-only ` flag.
@@ -66,7 +66,7 @@ $ python launch_benchmark.py \
66
66
--mode inference \
67
67
--batch-size=100 \
68
68
--accuracy-only \
69
- --docker-image intel/intel-optimized-tensorflow:2.2 .0
69
+ --docker-image intel/intel-optimized-tensorflow:2.3 .0
70
70
```
71
71
The log file is saved to the value of ` --output-dir ` .
72
72
@@ -105,7 +105,7 @@ $ python launch_benchmark.py \
105
105
--mode inference \
106
106
--batch-size=128 \
107
107
--benchmark-only \
108
- --docker-image intel/intel-optimized-tensorflow:2.2.0 \
108
+ --docker-image intel/intel-optimized-tensorflow:2.3.0
109
109
-- warmup_steps=50 steps=500
110
110
```
111
111
The tail of the log output when the benchmarking completes should look
@@ -164,7 +164,7 @@ $ python launch_benchmark.py \
164
164
--mode inference \
165
165
--batch-size=1 \
166
166
--socket-id=0 \
167
- --docker-image intel/intel-optimized-tensorflow:2.2 .0
167
+ --docker-image intel/intel-optimized-tensorflow:2.3 .0
168
168
```
169
169
170
170
The log file is saved to the value of ` --output-dir ` .
@@ -202,7 +202,7 @@ $ python launch_benchmark.py \
202
202
--mode inference \
203
203
--batch-size=128 \
204
204
--socket-id=0 \
205
- --docker-image intel/intel-optimized-tensorflow:2.2 .0
205
+ --docker-image intel/intel-optimized-tensorflow:2.3 .0
206
206
```
207
207
208
208
The log file is saved to the value of ` --output-dir ` .
@@ -243,7 +243,7 @@ $ python launch_benchmark.py \
243
243
--batch-size 100 \
244
244
--socket-id=0 \
245
245
--data-location /home/<user>/dataset/ImageNetData_directory \
246
- --docker-image intel/intel-optimized-tensorflow:2.2 .0
246
+ --docker-image intel/intel-optimized-tensorflow:2.3 .0
247
247
```
248
248
249
249
The log file is saved to the value of ` --output-dir ` .
@@ -280,7 +280,7 @@ $ python launch_benchmark.py \
280
280
--batch-size 100 \
281
281
--socket-id=0 \
282
282
--data-location /home/<user>/dataset/ImageNetData_directory \
283
- --docker-image intel/intel-optimized-tensorflow:2.2 .0
283
+ --docker-image intel/intel-optimized-tensorflow:2.3 .0
284
284
```
285
285
The results file will be written to the
286
286
` models/benchmarks/common/tensorflow/logs ` directory, unless another
@@ -344,7 +344,7 @@ $ python launch_benchmark.py \
344
344
--mode inference \
345
345
--batch-size=1 \
346
346
--socket-id 0 \
347
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly
347
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0
348
348
```
349
349
350
350
The log file is saved to the value of ` --output-dir ` .
@@ -380,7 +380,7 @@ $ python launch_benchmark.py \
380
380
--mode inference \
381
381
--batch-size=128 \
382
382
--socket-id 0 \
383
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly
383
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0
384
384
```
385
385
386
386
The log file is saved to the value of ` --output-dir ` .
@@ -419,7 +419,7 @@ $ python launch_benchmark.py \
419
419
--batch-size 100 \
420
420
--socket-id 0 \
421
421
--data-location /home/<user>/dataset/ImageNetData_directory \
422
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly
422
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0
423
423
```
424
424
425
425
The log file is saved to the value of ` --output-dir ` .
@@ -454,7 +454,7 @@ $ python launch_benchmark.py \
454
454
--batch-size 100 \
455
455
--socket-id 0 \
456
456
--data-location /home/<user>/dataset/ImageNetData_directory \
457
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly
457
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0
458
458
```
459
459
The results file will be written to the
460
460
` models/benchmarks/common/tensorflow/logs ` directory, unless another
@@ -555,7 +555,7 @@ $ python launch_benchmark.py \
555
555
--framework tensorflow \
556
556
--checkpoint <location_to_store_training_checkpoints> \
557
557
--data-location=/home/<user>/dataset/ImageNetData_directory \
558
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly
558
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0
559
559
```
560
560
561
561
This run will take considerable amount of time since it is running for
@@ -585,7 +585,7 @@ $ python launch_benchmark.py \
585
585
--framework tensorflow \
586
586
--data-location=/home/<user>/dataset/ImageNetData_directory \
587
587
--mpi_num_processes=2 \
588
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly
588
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0
589
589
```
590
590
The above distributed training runs one MPI process per socket, to maximize performance, users can run more than one (commonly two) MPI processes per socket. The following command achieves launching 4 MPI processes over 2 sockets. Note that in this case we need to reduce the OMP_NUM_THREADS and intra_op_parallelism_threads by half (minus one or two for performance sometimes, e.g. half of 28 becomes 14, and we can use 12 for good performance). This is controlled by "-a <half the amount of cores of per socket or less >". Batch size can remain the same for weak scaling or reduced by half as well for strong scaling.
591
591
@@ -598,7 +598,7 @@ $ python launch_benchmark.py \
598
598
--data-location=/home/<user>/dataset/ImageNetData_directory \
599
599
--mpi_num_processes=4 \
600
600
--mpi_num_processes_per_socket=2 \
601
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly \
601
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0 \
602
602
-a <half the amount of cores per socket or less>
603
603
```
604
604
@@ -613,7 +613,7 @@ $ python launch_benchmark.py \
613
613
--data-location=/home/<user>/dataset/ImageNetData_directory \
614
614
--mpi_num_processes=2 \
615
615
--mpi_num_processes_per_socket=1 \
616
- --docker-image=intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly \
616
+ --docker-image=intel/intel-optimized-tensorflow:2.3.0 \
617
617
-a <half the amount of cores per socket or less>
618
618
```
619
619
0 commit comments