-
Notifications
You must be signed in to change notification settings - Fork 223
/
Copy pathrun_model.sh
executable file
·194 lines (176 loc) · 7.3 KB
/
run_model.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/bin/bash
# Copyright (c) 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
if [[ "$TEST_MODE" == "THROUGHPUT" ]]; then
echo "TEST_MODE set to THROUGHPUT"
elif [[ "$TEST_MODE" == "ACCURACY" ]]; then
echo "TEST_MODE set to ACCURACY"
else
echo "Please set TEST_MODE to THROUGHPUT or ACCURACY"
exit
fi
MODEL_DIR=${MODEL_DIR-$PWD}
if [ ! -e "${MODEL_DIR}/../../common/dlrm_s_pytorch.py" ]; then
echo "Could not find the script of dlrm_s_pytorch.py. Please set environment variable '\${MODEL_DIR}'."
echo "From which the dlrm_s_pytorch.py exist at."
exit 1
fi
MODEL_SCRIPT=${MODEL_DIR}/../../common/dlrm_s_pytorch.py
if [ -z "${OUTPUT_DIR}" ]; then
echo "The required environment variable OUTPUT_DIR has not been set"
exit 1
fi
if [ -z "${DATASET_DIR}" ]; then
echo "The required environment variable DATASET_DIR has not been set"
exit 1
fi
if [ -z "${PRECISION}" ]; then
echo "Please set PRECISION: int8, fp32, bf16, bf32"
exit 1
fi
# Create the output directory in case it doesn't already exist
mkdir -p ${OUTPUT_DIR}
if [ $THROUGHPUT ]; then
LOG=${OUTPUT_DIR}/dlrm_inference_performance_log/${PRECISION}
else
LOG=${OUTPUT_DIR}/dlrm_inference_accuracy_log/${PRECISION}
fi
rm -rf ${LOG}
mkdir -p ${LOG}
rm -rf ${OUTPUT_DIR}/summary.log
rm -rf ${OUTPUT_DIR}/results.yaml
CORES_PER_SOCKET=`lscpu | grep "Core(s) per socket" | awk '{print $4}'`
SOCKETS=`lscpu | grep "Socket(s)" | awk '{print $2}'`
NUMA_NODES=`lscpu | grep "NUMA node(s)" | awk '{print $3}'`
NUMA_NODES_PER_SOCKETS=`expr $NUMA_NODES / $SOCKETS`
CORES_PER_NUMA_NODE=`expr $CORES_PER_SOCKET / $NUMA_NODES_PER_SOCKETS`
# Runs with default value when BATCH SIZE is not set:
BATCH_SIZE=${BATCH_SIZE:-128}
ARGS=""
if [[ $PRECISION == "int8" ]]; then
echo "running int8 path"
ARGS="$ARGS --num-cpu-cores=$CORES_PER_NUMA_NODE --int8 --int8-configure=${MODEL_DIR}/models/recommendation/pytorch/dlrm/product/int8_configure.json"
elif [[ $PRECISION == "bf16" ]]; then
ARGS="$ARGS --bf16"
echo "running bf16 path"
elif [[ $PRECISION == "fp32" ]]; then
echo "running fp32 path"
elif [[ $PRECISION == "bf32" ]]; then
echo "running bf32 path"
ARGS="$ARGS --bf32"
else
echo "The specified PRECISION '${PRECISION}' is unsupported."
echo "Supported PRECISIONs are: fp32, bf32, bf16, and int8"
exit 1
fi
export OMP_NUM_THREADS=$CORES_PER_SOCKET
if [ "$TEST_MODE" == "THROUGHPUT" ]; then
LOG="${LOG}/throughput.log"
else
LOG="${LOG}/accuracy.log"
fi
TORCH_INDUCTOR=${TORCH_INDUCTOR:-"0"}
if [ "$TEST_MODE" == "THROUGHPUT" ]; then
if [[ "0" == ${TORCH_INDUCTOR} ]];then
python -m intel_extension_for_pytorch.cpu.launch --throughput_mode --memory-allocator tcmalloc --log-dir ${OUTPUT_DIR} $MODEL_SCRIPT \
--raw-data-file=${DATASET_DIR}/day --processed-data-file=${DATASET_DIR}/terabyte_processed.npz \
--data-set=terabyte \
--memory-map --mlperf-bin-loader --round-targets=True --learning-rate=1.0 \
--arch-mlp-bot=13-512-256-128 --arch-mlp-top=1024-1024-512-256-1 \
--arch-sparse-feature-size=128 --max-ind-range=40000000 --ipex-interaction \
--numpy-rand-seed=727 --inference-only --num-batches=1000 \
--print-freq=10 --print-time --test-mini-batch-size=${BATCH_SIZE} --share-weight-instance=$CORES_PER_NUMA_NODE \
$ARGS |tee $LOG
else
echo "### running with torch.compile inductor backend"
export TORCHINDUCTOR_FREEZING=1
python -m torch.backends.xeon.run_cpu --disable-numactl --throughput_mode --enable-tcmalloc --log-path ${OUTPUT_DIR} $MODEL_SCRIPT \
--raw-data-file=${DATASET_DIR}/day --processed-data-file=${DATASET_DIR}/terabyte_processed.npz \
--data-set=terabyte \
--memory-map --mlperf-bin-loader --round-targets=True --learning-rate=1.0 \
--arch-mlp-bot=13-512-256-128 --arch-mlp-top=1024-1024-512-256-1 \
--arch-sparse-feature-size=128 --max-ind-range=40000000 --inductor \
--numpy-rand-seed=727 --inference-only --num-batches=1000 \
--print-freq=10 --print-time --test-mini-batch-size=${BATCH_SIZE} --share-weight-instance=$CORES_PER_NUMA_NODE \
$ARGS |tee $LOG
fi
else
if [[ "0" == ${TORCH_INDUCTOR} ]];then
python -m intel_extension_for_pytorch.cpu.launch --log-dir ${OUTPUT_DIR} $MODEL_SCRIPT \
--raw-data-file=${DATASET_DIR}/day --processed-data-file=${DATASET_DIR}/terabyte_processed.npz \
--data-set=terabyte \
--memory-map --mlperf-bin-loader --round-targets=True --learning-rate=1.0 \
--arch-mlp-bot=13-512-256-128 --arch-mlp-top=1024-1024-512-256-1 \
--arch-sparse-feature-size=128 --max-ind-range=40000000 \
--numpy-rand-seed=727 --inference-only --ipex-interaction \
--print-freq=100 --print-time --mini-batch-size=2048 --test-mini-batch-size=16384 \
--test-freq=2048 --print-auc $ARGS \
--load-model=${WEIGHT_PATH} | tee $LOG
else
echo "### running with torch.compile inductor backend"
export TORCHINDUCTOR_FREEZING=1
python -m torch.backends.xeon.run_cpu --disable-numactl --log-path ${OUTPUT_DIR} -- $MODEL_SCRIPT \
--raw-data-file=${DATASET_DIR}/day --processed-data-file=${DATASET_DIR}/terabyte_processed.npz \
--data-set=terabyte \
--memory-map --mlperf-bin-loader --round-targets=True --learning-rate=1.0 \
--arch-mlp-bot=13-512-256-128 --arch-mlp-top=1024-1024-512-256-1 \
--arch-sparse-feature-size=128 --max-ind-range=40000000 \
--numpy-rand-seed=727 --inference-only --inductor \
--print-freq=100 --print-time --mini-batch-size=2048 --test-mini-batch-size=16384 \
--test-freq=2048 --print-auc $ARGS \
--load-model=${WEIGHT_PATH} | tee $LOG
fi
fi
throughput="N/A"
accuracy="N/A"
latency="N/A"
if [ "$TEST_MODE" == "THROUGHPUT" ]; then
throughput=$(grep 'Throughput:' ${LOG} |sed -e 's/.*Throughput//;s/[^0-9.]//g' |awk '
BEGIN {
sum = 0;
i = 0;
}
{
sum = sum + $1;
i++;
}
END {
sum = sum / i;
printf("%.3f", sum);
}')
echo "--------------------------------Performance Summary per NUMA Node--------------------------------"
echo ""dlrm";"throughput";${PRECISION};${BATCH_SIZE};${throughput}" | tee -a ${OUTPUT_DIR}/summary.log
else
accuracy=$(grep 'Accuracy:' $LOG |sed -e 's/.*Accuracy//;s/[^0-9.]//g')
echo ""dlrm";"auc";${PRECISION};16384;${accuracy}" | tee -a ${OUTPUT_DIR}/summary.log
fi
echo "Throughput: $throughput"
echo "Accuracy: $accuracy"
echo "Latency: $latency"
yaml_content=$(cat << EOF
results:
- key : throughput
value: $throughput
unit: samples per second
- key: latency
value: $latency
unit: s
- key: accuracy
value: $accuracy
unit: percentage
EOF
)
echo "$yaml_content" > $OUTPUT_DIR/results.yaml
echo "YAML file created."