This document has instructions for running DLRM Inference using Intel Extension for PyTorch.
docker pull intel/recommendation:centos-pytorch-cpu-dlrm-inference
Script name | Description |
---|---|
inference_performance.sh |
Run inference to verify performance for the specified precision (fp32, int8, bf32 or bf16). |
accuracy.sh |
Measures the inference accuracy for the specified precision (fp32, int8, bf32 or bf16). |
The Criteo Terabyte Dataset is used to run DLRM. To download the dataset, you will need to visit the Criteo website and accept their terms of use: https://labs.criteo.com/2013/12/download-terabyte-click-logs/. Copy the download URL into the command below as the <download url>
and replace the <dir/to/save/dlrm_data>
to any path where you want to download and save the dataset.
export DATASET_DIR=<dir/to/save/dlrm_data>
mkdir ${DATASET_DIR} && cd ${DATASET_DIR}
curl -O <download url>/day_{$(seq -s , 0 23)}.gz
gunzip day_*.gz
The raw data will be automatically preprocessed and saved as day_*.npz
to the DATASET_DIR
when DLRM is run for the first time. On subsequent runs, the scripts will automatically use the preprocessed data.
Download the DLRM PyTorch weights (tb00_40M.pt
, 90GB) from the MLPerf repo and set the WEIGHT_PATH
to point to the weights file.
export WEIGHT_PATH=<path to the tb00_40M.pt file>
(Optional) Export related proxy into docker environment.
export DOCKER_RUN_ENVS="-e ftp_proxy=${ftp_proxy} \
-e FTP_PROXY=${FTP_PROXY} -e http_proxy=${http_proxy} \
-e HTTP_PROXY=${HTTP_PROXY} -e https_proxy=${https_proxy} \
-e HTTPS_PROXY=${HTTPS_PROXY} -e no_proxy=${no_proxy} \
-e NO_PROXY=${NO_PROXY} -e socks_proxy=${socks_proxy} \
-e SOCKS_PROXY=${SOCKS_PROXY}"
To run DLRM inference, set environment variables to specify the dataset directory, precision,pre-trained model, and an output directory.
export DATASET_DIR=<path to the dataset>
export OUTPUT_DIR=<directory where log files will be written>
export SCRIPT=quickstart/<specify the script to run>
export PRECISION=<specify the precision to run>
export BERT_WEIGHT=<specify path to pre-trained model>
IMAGE_NAME=intel/recommendation:centos-pytorch-cpu-dlrm-inference
DOCKER_ARGS="--privileged --init -it"
WORKDIR=/workspace/pytorch-dlrm-inference
docker run --rm \
--env DATASET_DIR=${DATASET_DIR} \
--env PRECISION=${PRECISION} \
--env WEIGHT_PATH=${WEIGHT_PATH} \
--env OUTPUT_DIR=${OUTPUT_DIR} \
--env http_proxy=${http_proxy} \
--env https_proxy=${https_proxy} \
--env no_proxy=${no_proxy} \
--volume ${DATASET_DIR}:${DATASET_DIR} \
--volume ${OUTPUT_DIR}:${OUTPUT_DIR} \
--volume ${WEIGHT_PATH}:${WEIGHT_PATH} \
${DOCKER_RUN_ENVS} \
--shm-size 8G \
-w ${WORKDIR} \
${DOCKER_ARGS} \
$IMAGE_NAME \
/bin/bash $SCRIPT
LEGAL NOTICE: By accessing, downloading or using this software and any required dependent software (the “Software Package”), you agree to the terms and conditions of the software license agreements for the Software Package, which may also include notices, disclaimers, or license terms for third party software included with the Software Package. Please refer to the license file for additional details.