-
Notifications
You must be signed in to change notification settings - Fork 223
/
Copy pathbase_benchmark_util.py
406 lines (344 loc) · 20.1 KB
/
base_benchmark_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018-2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
from argparse import ArgumentParser
from common import platform_util
from common.utils.validators import (check_positive_number, check_valid_filename, check_valid_file_or_dir,
check_valid_folder, check_positive_number_or_equal_to_negative_one,
check_num_cores_per_instance)
class BaseBenchmarkUtil(object):
"""Base benchmark util class"""
MODEL_INITIALIZER = "model_init"
def __init__(self, platform_util_obj=None):
self._common_arg_parser = None
self._define_args()
self.args, _ = self._common_arg_parser.parse_known_args()
# currently used for testing, need to be able to pass in mocked values
# TODO: but also, why is this class not inheriting PlatformUtil?
self._platform_util = platform_util_obj or platform_util.PlatformUtil(self.args)
self._validate_args()
def _define_args(self):
"""define args for the benchmark interface shared by FP32 and int8
models"""
# only require the arg, if we aren't just printing out --help
required_arg = "--help" not in sys.argv
self._common_arg_parser = ArgumentParser(
add_help=False, description="Parse args for base benchmark "
"interface")
self._common_arg_parser.add_argument(
"-f", "--framework",
help="Specify the name of the deep learning framework to use.",
dest="framework", default=None, required=required_arg)
self._common_arg_parser.add_argument(
"-r", "--model-source-dir",
help="Specify the models source directory from your local machine",
nargs="?", dest="model_source_dir", type=check_valid_folder)
self._common_arg_parser.add_argument(
"-p", "--precision",
help="Specify the model precision to use: fp32, int8, bfloat16 or fp16",
required=required_arg, choices=["fp32", "int8", "bfloat16", "fp16"],
dest="precision")
self._common_arg_parser.add_argument(
"-mo", "--mode", help="Specify the type training or inference ",
required=required_arg, choices=["training", "inference"], dest="mode")
self._common_arg_parser.add_argument(
"-m", "--model-name", required=required_arg,
help="model name to run benchmarks for", dest="model_name")
self._common_arg_parser.add_argument(
"-b", "--batch-size",
help="Specify the batch size. If this parameter is not specified "
"or is -1, the largest ideal batch size for the model will "
"be used",
dest="batch_size", default=-1,
type=check_positive_number_or_equal_to_negative_one)
self._common_arg_parser.add_argument(
"--mpi_num_processes", type=check_positive_number,
help="The number of MPI processes. This cannot in conjunction with --numa-cores-per-instance, "
"which uses numactl to run multiple instances.",
dest="mpi", default=None)
self._common_arg_parser.add_argument(
"--mpi_num_processes_per_socket", type=check_positive_number,
help="Specify how many MPI processes to launch per socket",
dest="num_mpi", default=1)
self._common_arg_parser.add_argument(
"--mpi_hostnames",
help="Specify MPI hostnames string of the form --mpi_hostnames host1,host2,host3",
dest="mpi_hostnames", default=None)
self._common_arg_parser.add_argument(
"--numa-cores-per-instance", type=check_num_cores_per_instance,
help="If set, the script will run multiple instances using numactl to specify which "
"cores will be used to execute each instance. Set the value of this arg to a "
"positive integer for the number of cores to use per instance or to 'socket' to "
"indicate that all the cores on a socket should be used for each instance. This "
"cannot be used in conjunction with --mpi_num_processes, which uses mpirun.",
dest="numa_cores_per_instance", default=None)
self._common_arg_parser.add_argument(
"-d", "--data-location",
help="Specify the location of the data. If this parameter is not "
"specified, the benchmark will use random/dummy data.",
dest="data_location", default=None, type=check_valid_file_or_dir)
self._common_arg_parser.add_argument(
"-i", "--socket-id",
help="Specify which socket to use. Only one socket will be used "
"when this value is set. If used in conjunction with "
"--num-cores, all cores will be allocated on the single "
"socket.",
dest="socket_id", type=int, default=-1)
self._common_arg_parser.add_argument(
"-n", "--num-cores",
help="Specify the number of physical cores to use. If the parameter is not"
" specified or is -1, all physical cores will be used.",
dest="num_cores", type=int, default=-1)
self._common_arg_parser.add_argument(
"--num-instances", type=check_positive_number,
help="Specify the number of instances to run. This flag is deprecated and will "
"be removed in the future. Please use --numa-cores-per-instance instead.",
dest="num_instances", default=1)
self._common_arg_parser.add_argument(
"-a", "--num-intra-threads", type=check_positive_number,
help="Specify the number of threads within the layer",
dest="num_intra_threads", default=None)
# removing the check_positive_number test to support weight-sharing
self._common_arg_parser.add_argument(
"-e", "--num-inter-threads",
help="Specify the number threads between layers",
dest="num_inter_threads", default=None)
self._common_arg_parser.add_argument(
"-ts", "--num-train-steps", type=check_positive_number,
help="Specify the number of training steps ",
dest="num_train_steps", default=1)
self._common_arg_parser.add_argument(
"--data-num-intra-threads", type=check_positive_number,
help="The number intra op threads for the data layer config",
dest="data_num_intra_threads", default=None)
# removing the check_positive_number test to support weight-sharing
self._common_arg_parser.add_argument(
"--data-num-inter-threads",
help="The number inter op threads for the data layer config",
dest="data_num_inter_threads", default=None)
self._common_arg_parser.add_argument(
"--weight-sharing",
help="Enables experimental weight-sharing feature for RN50 int8/bf16 inference only",
dest="weight_sharing", action="store_true")
self._common_arg_parser.add_argument(
"--synthetic-data",
help="Enables synthetic data layer for some models like SSD-ResNet34 where support exists",
dest="synthetic_data", action="store_true")
self._common_arg_parser.add_argument(
"-c", "--checkpoint",
help="Specify the location of trained model checkpoint directory. "
"If mode=training model/weights will be written to this "
"location. If mode=inference assumes that the location points"
" to a model that has already been trained. Note that using "
"checkpoint files for inference is being deprecated, in favor "
"of using frozen graphs.",
dest="checkpoint", default=None, type=check_valid_folder)
self._common_arg_parser.add_argument(
"-bb", "--backbone-model",
help="Specify the location of backbone-model directory. "
"This option can be used by models (like SSD_Resnet34) "
"to do fine-tuning training or achieve convergence.",
dest="backbone_model", default=None, type=check_valid_folder)
self._common_arg_parser.add_argument(
"-g", "--in-graph", help="Full path to the input graph ",
dest="input_graph", default=None, type=check_valid_filename)
self._common_arg_parser.add_argument(
"-k", "--benchmark-only",
help="For benchmark measurement only. If neither --benchmark-only "
"or --accuracy-only are specified, it will default to run "
"benchmarking.",
dest="benchmark_only", action="store_true")
self._common_arg_parser.add_argument(
"--accuracy-only",
help="For accuracy measurement only. If neither --benchmark-only "
"or --accuracy-only are specified, it will default to run "
"benchmarking.",
dest="accuracy_only", action="store_true")
self._common_arg_parser.add_argument(
"--output-results",
help="Writes inference output to a file, when used in conjunction "
"with --accuracy-only and --mode=inference.",
dest="output_results", action="store_true")
self._common_arg_parser.add_argument(
"--optimized-softmax",
help="Use tf.nn.softmax as opposed to basic math ops",
dest="optimized_softmax", choices=["True", "False"],
default=True)
self._common_arg_parser.add_argument(
"--experimental-gelu",
help="use tf.nn.gelu as opposed to basic math ops",
dest="experimental_gelu", choices=["True", "False"],
default=False)
self._common_arg_parser.add_argument(
"--amp",
help="use grappler auto-mixed precision as opposed to \
keras mixed precision",
dest="amp", choices=["True", "False"],
default=False)
# Note this can't be a normal boolean flag, because we need to know when the user
# does not explicitly set the arg value so that we can apply the appropriate
# default value, depending on the the precision.
self._common_arg_parser.add_argument(
"--disable-tcmalloc",
help="When TCMalloc is enabled, the google-perftools are installed (if running "
"using docker) and the LD_PRELOAD environment variable is set to point to "
"the TCMalloc library file. The TCMalloc memory allocator produces better "
"performance results with smaller batch sizes. This flag disables the use of "
"TCMalloc when set to True. For int8 benchmarking, TCMalloc is enabled by "
"default (--disable-tcmalloc=False). For other precisions, the flag is "
"--disable-tcmalloc=True by default.",
dest="disable_tcmalloc", choices=["True", "False"],
default=None
)
self._common_arg_parser.add_argument(
"--tcmalloc-large-alloc-report-threshold",
help="Sets the TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD environment variable to "
"the specified value. The environment variable sets the threshold (in bytes) "
"for when large memory allocation messages will be displayed.",
dest="tcmalloc_large_alloc_report_threshold", default=2147483648, type=int
)
self._common_arg_parser.add_argument(
"-v", "--verbose", help="Print verbose information.",
dest="verbose", action="store_true")
self._common_arg_parser.add_argument(
"--output-dir",
help="Folder to dump output into. The output directory will default to "
"'models/benchmarks/common/tensorflow/logs' if no path is specified.",
default="/models/benchmarks/common/tensorflow/logs")
self._common_arg_parser.add_argument(
"--tf-serving-version",
help="TF serving version to run the script with"
"'master' if no value is specified.",
default="master")
# Allow for additional command line args after --
self._common_arg_parser.add_argument(
"model_args", nargs="*",
help="Additional command line arguments (prefix flag start with"
" '--').")
# Check if GPU is enabled.
self._common_arg_parser.add_argument(
"--gpu",
help="Run the benchmark script using GPU",
dest="gpu", action="store_true")
def _validate_args(self):
"""validate the args and initializes platform_util"""
# check if socket id is in socket number range
num_numas = self._platform_util.num_numa_nodes
args = self.args
if (args.weight_sharing is True and (args.model_name != "resnet50v1_5" or args.precision == "fp32")):
print("Warning: Weight sharing support available only for RN50 int8 and bfloat16 models")
if not -1 <= args.socket_id < num_numas:
if num_numas > 0:
raise ValueError("Socket id must be within NUMA number range: "
"[0, {}].".format(num_numas - 1))
else:
print("Warning: There are no NUMA nodes on your system and a socket id has "
"been specified, a socket id can't be used so default to using all sockets")
# if a socket_id is specified, only count cores from one socket
system_num_cores = self._platform_util.num_cores_per_socket if \
num_numas and args.socket_id != -1 else self._platform_util.num_cores_per_socket * \
self._platform_util.num_cpu_sockets
num_cores = args.num_cores
if (num_cores <= 0) and (num_cores != -1):
raise ValueError(
"Core number must be greater than 0 or -1. The default value "
"is -1 which means using all the cores in the sockets")
elif num_cores > system_num_cores:
raise ValueError("Number of cores exceeds system core number: {}".
format(system_num_cores))
if args.output_results and ((args.model_name != "resnet50" and
args.model_name != "resnet50v1_5") or
(args.precision != "fp32" and args.precision != "fp16")):
raise ValueError("--output-results is currently only supported for resnet50 FP32 or FP16 inference.")
elif args.output_results and (args.mode != "inference" or not args.data_location):
raise ValueError("--output-results can only be used when running inference with a dataset.")
if args.num_instances != 1:
print("Warning: The --num-instances flag is deprecated and will be removed in the future. "
"Please use --numa-cores-per-instance instead.")
# Verify that the number of numa cores per instances is less than the number of system cores
if args.numa_cores_per_instance:
# Make sure that --mpi_num_processes hasn't also been set
if args.mpi:
raise ValueError("--mpi_num_processes cannot be used together with --numa-cores-per-instance.")
if args.numa_cores_per_instance != "socket":
if args.socket_id != -1:
if int(args.numa_cores_per_instance) > self._platform_util.num_cores_per_socket:
raise ValueError("The number of --numa-cores-per-instance ({}) cannot exceed the "
"number of cores per socket {} when a single socket (--socket-id {}) "
"is being used.".format(args.numa_cores_per_instance,
self._platform_util.num_cores_per_socket,
args.socket_id))
else:
if int(args.numa_cores_per_instance) > system_num_cores:
raise ValueError("The number of --numa-cores-per-instance ({}) cannot exceed the "
"number of system cores ({}).".format(args.numa_cores_per_instance,
system_num_cores))
# If socket id is specified and we have a cpuset, make sure that there are some cores in the specified socket.
# If cores are limited, then print out a note about that.
if args.socket_id != -1 and self._platform_util.cpuset_cpus:
cpuset_len_for_socket = 0
if args.socket_id in self._platform_util.cpuset_cpus.keys():
cpuset_len_for_socket = len(self._platform_util.cpuset_cpus[args.socket_id])
if cpuset_len_for_socket == 0:
sys.exit("ERROR: There are no socket id {} cores in the cpuset.".format(args.socket_id))
elif cpuset_len_for_socket < self._platform_util.num_cores_per_socket:
print("Note: Socket id {} is specified, but the cpuset has limited this socket to {} cores. "
"This is less than the number of cores per socket on the system ({})".
format(args.socket_id, cpuset_len_for_socket, self._platform_util.num_cores_per_socket))
if args.gpu:
if args.socket_id != -1:
raise ValueError("--socket-id cannot be used with --gpu parameter.")
if args.num_intra_threads is not None:
raise ValueError("--num-intra-threads cannot be used with --gpu parameter.")
if args.num_inter_threads is not None:
raise ValueError("--num-inter-threads cannot be used with --gpu parameter.")
def initialize_model(self, args, unknown_args):
"""Create model initializer for the specified model"""
model_initializer = None
model_init_file = None
if args.model_name: # not empty
current_path = os.path.dirname(
os.path.dirname(os.path.realpath(__file__)))
if args.numa_cores_per_instance == "socket":
if self._platform_util.cpuset_cpus:
if args.socket_id != -1:
args.numa_cores_per_instance = len(self._platform_util.cpuset_cpus[args.socket_id])
else:
args.numa_cores_per_instance = "socket"
else:
args.numa_cores_per_instance = self._platform_util.num_cores_per_socket
# find the path to the model_init.py file
filename = "{}.py".format(self.MODEL_INITIALIZER)
model_init_file = os.path.join(current_path, args.use_case,
args.framework, args.model_name,
args.mode, args.precision,
filename)
package = ".".join([args.use_case, args.framework,
args.model_name, args.mode, args.precision])
model_init_module = __import__(
package + "." + self.MODEL_INITIALIZER, fromlist=["*"])
model_initializer = model_init_module.ModelInitializer(
args, unknown_args, self._platform_util)
if model_initializer is None:
raise ImportError("Unable to locate {}.".format(model_init_file))
return model_initializer