-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresampler.rs
177 lines (154 loc) · 5.32 KB
/
resampler.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use rubato::{FftFixedIn, VecResampler};
use crate::rtc::audio::get_opus_samples_count;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Chunk {
TenMs,
#[allow(unused)]
FiveMs,
TwoAndHalfMs,
}
pub struct ResamplerConfig {
pub input_sample_rate: u32,
pub output_sample_rate: u32,
pub channels: u16,
pub chunk: Chunk,
}
pub struct Resampler {
resampler: FftFixedIn<f32>,
// resampler: FftFixedInOut<f32>,
needs_resampling: bool,
resampler_in_buffer: Vec<Vec<f32>>,
resampler_out_buffer: Vec<Vec<f32>>,
output_buffer: Vec<f32>,
/// Interleaved output for a given frame (may consist of multiple 10ms chunks appeneded in a single vec)
chunk_size: usize,
channels: u16,
}
impl Resampler {
pub fn new(config: ResamplerConfig) -> Self {
info!(
"input_sample_rate {} output_sample_rate {}",
&config.input_sample_rate, &config.output_sample_rate,
);
let samples_count_10ms = get_opus_samples_count(config.input_sample_rate, config.channels, 10);
// 10 ms
let chunk_size = if config.chunk == Chunk::TenMs {
samples_count_10ms
} else if config.chunk == Chunk::TwoAndHalfMs {
samples_count_10ms / 4
} else {
samples_count_10ms / 2
} / config.channels as usize;
info!("resampler: input_sample_rate={}", config.input_sample_rate);
info!("resampler: samples_count_10ms={}", samples_count_10ms);
info!("resampler: chunk_size={}", chunk_size);
//
// let resampler = FftFixedOut::<f32>::new(
let resampler = FftFixedIn::<f32>::new(
config.input_sample_rate as usize,
config.output_sample_rate as usize,
// get 10ms
chunk_size,
2,
config.channels as usize,
)
.expect("Failed to create resampler");
let needs_resampling = config.input_sample_rate != config.output_sample_rate;
// Pre-allocate
let resampler_in_buffer: Vec<Vec<f32>> = resampler.input_buffer_allocate(true);
let resampler_out_buffer: Vec<Vec<f32>> = resampler.output_buffer_allocate(true);
// max 120ms per spec
let output_buffer: Vec<f32> = Vec::with_capacity(samples_count_10ms * 12);
Self {
resampler,
needs_resampling,
resampler_in_buffer,
resampler_out_buffer,
output_buffer,
chunk_size,
channels: config.channels,
}
}
/// Process in 10 ms chunks
pub fn process<'a, 'b>(&'a mut self, samples: &'b [f32]) -> &'a [f32] {
if self.needs_resampling {
// cleanup previous frame
self.output_buffer.clear();
// we will furthur split this per channels before the process
let chunk_size_before_split = self.chunk_size * self.channels as usize;
// info!(
// "resampler.process: samples={} channels={} chunks={}",
// &samples.len(),
// self.channels,
// &samples.len() / chunk_size_before_split
// );
// Resample = do synchronous resampling
let in_buffer = self.resampler_in_buffer.as_mut();
let mut processed_samples = 0;
for chunk in samples.chunks(chunk_size_before_split) {
// convert to non-interleaved
let _ = Self::process_for_resampler(chunk, self.channels, in_buffer);
// info!("chunk len={}", chunk.len());
// process chunk
self
.resampler
.process_into_buffer(in_buffer, self.resampler_out_buffer.as_mut_slice(), None)
.expect("resampler failed to process");
// Insert into output buffer
let samples_per_channel = self.resampler_out_buffer[0].len();
trace!(
"resampler.process: left={:?} right={:?}",
&self.resampler_out_buffer[0][0..40],
&self.resampler_out_buffer[1][0..40]
);
assert!(
self.resampler_out_buffer[0].len() == self.resampler_out_buffer[1].len(),
"resampler output buffer is not the same size"
);
assert!(self.channels == 2, "channels is not 2");
// dbg!(samples_per_channel);
// the order is important
for sample_index in 0..samples_per_channel {
for channel_index in 0..self.channels as usize {
processed_samples += 1;
self
.output_buffer
.push(self.resampler_out_buffer[channel_index][sample_index]);
}
}
}
// output all chunks as a whole
&self.output_buffer[0..processed_samples]
} else {
// no need to touch
self.output_buffer.clear();
self.output_buffer.extend_from_slice(samples);
&self.output_buffer[0..samples.len()]
// return samples;
}
}
/// Converts interleaved samples to non-interleaved,
/// output how many noninterleaved vecs should be used
fn process_for_resampler(
input_samples: &[f32],
channels: u16,
processed_buffer: &mut Vec<Vec<f32>>,
) -> usize {
processed_buffer[0].clear();
processed_buffer[1].clear();
if channels == 2 {
for (_i, pair) in input_samples[..].chunks_exact(2).enumerate() {
processed_buffer[0].push(pair[0]);
processed_buffer[1].push(pair[1]);
}
} else {
for sample in input_samples {
processed_buffer[0].push(*sample);
// added by mo to fix the single channel bug
processed_buffer[1].push(*sample);
// if a channel sub vec length = 0, it is marked as inactive by resampler
}
}
input_samples.len() / channels as usize
}
}