forked from udacity/FCND-Motion-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanning_utils.py
268 lines (224 loc) · 8.56 KB
/
planning_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from enum import Enum
from queue import PriorityQueue
from bresenham import bresenham
from scipy.spatial import Voronoi
import numpy as np
import numpy.linalg as LA
def create_grid(data, drone_altitude, safety_distance):
"""
Returns a grid representation of a 2D configuration space
based on given obstacle data, drone altitude and safety distance
arguments.
"""
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil(north_max - north_min))
east_size = int(np.ceil(east_max - east_min))
# Initialize an empty grid
grid = np.zeros((north_size, east_size))
# Populate the grid with obstacles
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
if alt + d_alt + safety_distance > drone_altitude:
obstacle = [
int(np.clip(north - d_north - safety_distance - north_min, 0, north_size-1)),
int(np.clip(north + d_north + safety_distance - north_min, 0, north_size-1)),
int(np.clip(east - d_east - safety_distance - east_min, 0, east_size-1)),
int(np.clip(east + d_east + safety_distance - east_min, 0, east_size-1)),
]
grid[obstacle[0]:obstacle[1]+1, obstacle[2]:obstacle[3]+1] = 1
return grid, int(north_min), int(east_min)
# Here you'll modify the `create_grid()` method from a previous exercise
# In this new function you'll record obstacle centres and
# create a Voronoi graph around those points
def create_grid_and_edges(data, drone_altitude, safety_distance):
"""
Returns a grid representation of a 2D configuration space
along with Voronoi graph edges given obstacle data and the
drone's altitude.
"""
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil(north_max - north_min))
east_size = int(np.ceil(east_max - east_min))
# Initialize an empty grid
grid = np.zeros((north_size, east_size))
# Initialize an empty list for Voronoi points
points = []
# Populate the grid with obstacles
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
if alt + d_alt + safety_distance > drone_altitude:
obstacle = [
int(np.clip(north - d_north - safety_distance - north_min, 0, north_size-1)),
int(np.clip(north + d_north + safety_distance - north_min, 0, north_size-1)),
int(np.clip(east - d_east - safety_distance - east_min, 0, east_size-1)),
int(np.clip(east + d_east + safety_distance - east_min, 0, east_size-1)),
]
grid[obstacle[0]:obstacle[1]+1, obstacle[2]:obstacle[3]+1] = 1
# add center of obstacles to points list
points.append([north - north_min, east - east_min])
# TODO: create a voronoi graph based on
# location of obstacle centres
graph = Voronoi(points)
# TODO: check each edge from graph.ridge_vertices for collision
edges = []
for v in graph.ridge_vertices:
p1 = graph.vertices[v[0]]
p2 = graph.vertices[v[1]]
cells = list(bresenham(int(p1[0]), int(p1[1]), int(p2[0]), int(p2[1])))
hit = False
for c in cells:
# First check if we're off the map
if np.amin(c) < 0 or c[0] >= grid.shape[0] or c[1] >= grid.shape[1]:
hit = True
break
# Next check if we're in collision
if grid[c[0], c[1]] == 1:
hit = True
break
# If the edge does not hit on obstacle
# add it to the list
if not hit:
# array to tuple for future graph creation step)
p1 = (p1[0], p1[1])
p2 = (p2[0], p2[1])
edges.append((p1, p2))
return grid, int(north_min), int(east_min), edges
# Assume all actions cost the same.
class Action(Enum):
"""
An action is represented by a 3 element tuple.
The first 2 values are the delta of the action relative
to the current grid position. The third and final value
is the cost of performing the action.
"""
WEST = (0, -1, 1)
EAST = (0, 1, 1)
NORTH = (-1, 0, 1)
SOUTH = (1, 0, 1)
NORTHWEST = (-1, -1, 2**(1/2))
NORThEAST = (-1, 1, 2**(1/2))
SOUTHWEST = (1, -1, 2**(1/2))
SOUTHEAST = (1, 1, 2**(1/2))
@property
def cost(self):
return self.value[2]
@property
def delta(self):
return (self.value[0], self.value[1])
def valid_actions(grid, current_node):
"""
Returns a list of valid actions given a grid and current node.
"""
valid_actions = list(Action)
n, m = grid.shape[0] - 1, grid.shape[1] - 1
x, y = current_node
# check if the node is off the grid or
# it's an obstacle
if x - 1 < 0 or grid[x - 1, y] == 1:
valid_actions.remove(Action.NORTH)
if x + 1 > n or grid[x + 1, y] == 1:
valid_actions.remove(Action.SOUTH)
if y - 1 < 0 or grid[x, y - 1] == 1:
valid_actions.remove(Action.WEST)
if y + 1 > m or grid[x, y + 1] == 1:
valid_actions.remove(Action.EAST)
return valid_actions
def a_star(graph, h, start, goal):
"""Modified A* to work with NetworkX graphs."""
path = []
path_cost = 0
queue = PriorityQueue()
queue.put((0, start))
visited = set(start)
branch = {}
found = False
while not queue.empty():
item = queue.get()
current_node = item[1]
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
if current_node == goal:
print('Found a path.')
found = True
break
else:
for next_node in graph[current_node]:
cost = graph.edges[current_node, next_node]['weight']
branch_cost = current_cost + cost
queue_cost = branch_cost + h(next_node, goal)
if next_node not in visited:
visited.add(next_node)
branch[next_node] = (branch_cost, current_node)
queue.put((queue_cost, next_node))
if found:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
else:
print('**********************')
print('Failed to find a path!')
print('**********************')
return path[::-1], path_cost
def heuristic(n1, n2):
return LA.norm(np.array(n2) - np.array(n1))
def closest_point(graph, current_point):
"""
Compute the closest point in the `graph`
to the `current_point`.
"""
closest_point = None
dist = 100000
for p in graph.nodes:
d = LA.norm(np.array(p) - np.array(current_point))
if d < dist:
closest_point = p
dist = d
return closest_point
def point(p):
return np.array([p[0], p[1], 1.]).reshape(1, -1)
def collinearity_check(p1, p2, p3, epsilon=1e-6):
m = np.concatenate((p1, p2, p3), 0)
det = np.linalg.det(m)
return abs(det) < epsilon
def prune_path(path):
pruned_path = [p for p in path]
# TODO: prune the path!
i = 0
while i < len(pruned_path) - 2:
p1 = point(pruned_path[i])
p2 = point(pruned_path[i+1])
p3 = point(pruned_path[i+2])
# If the 3 points are in a line remove
# the 2nd point.
# The 3rd point now becomes and 2nd point
# and the check is redone with a new third point
# on the next iteration.
if collinearity_check(p1, p2, p3):
# Something subtle here but we can mutate
# `pruned_path` freely because the length
# of the list is check on every iteration.
pruned_path.remove(pruned_path[i+1])
else:
i += 1
return pruned_path