-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_network.py
163 lines (129 loc) · 6.19 KB
/
base_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
from typing import List, Literal, Union
class NNetwork:
def __init__(self, layers: List[int], activation: Literal["relu", "sigmoid"] = "relu",
optimizer: Literal["sgd", "adam"] = "sgd", learning_rate: float = 0.01) -> None:
self.parameters = {}
self.A_cache = {}
self.Z_cache = {}
self.num_layers = len(layers)
self.activation = activation
self.optimizer = optimizer
self.learning_rate = learning_rate
self.num_classes = layers[-1]
assert self.num_layers > 1, "Network must have at least two layers"
# Initialize parameters (weights and biases)
for l in range(1, self.num_layers):
self.parameters['W' + str(l)] = np.random.randn(layers[l], layers[l - 1]) * 0.01
self.parameters['b' + str(l)] = np.zeros((layers[l], 1))
# Adam optimizer initialization
if optimizer == "adam":
self.v = {k: np.zeros_like(v) for k, v in self.parameters.items()}
self.s = {k: np.zeros_like(v) for k, v in self.parameters.items()}
self.t = 0
def empty_cache(self) -> None:
self.A_cache = {}
self.Z_cache = {}
def _relu(self, Z: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
A = np.maximum(0, Z)
return A, Z
def _sigmoid(self, Z: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
A = 1 / (1 + np.exp(-Z))
return A, Z
def _softmax(self, Z: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
exp_Z = np.exp(Z - np.max(Z, axis=0, keepdims=True)) # Stability fix
A = exp_Z / np.sum(exp_Z, axis=0, keepdims=True)
return A, Z
def _relu_back(self, dA: np.ndarray, Z: np.ndarray) -> np.ndarray:
dZ = np.array(dA, copy=True)
dZ[Z <= 0] = 0
return dZ
def _sigmoid_back(self, dA: np.ndarray, Z: np.ndarray) -> np.ndarray:
s = 1 / (1 + np.exp(-Z))
return dA * s * (1 - s)
def _softmax_back(self, A: np.ndarray, Y: np.ndarray) -> np.ndarray:
return A - Y # Softmax + CE combined gradient
def forward(self, X: np.ndarray) -> np.ndarray:
self.empty_cache()
self.A_cache['A0'] = X
for l in range(1, self.num_layers):
Z = np.dot(self.parameters[f'W{l}'], self.A_cache[f'A{l-1}']) + self.parameters[f'b{l}']
self.Z_cache[f'Z{l}'] = Z
if l == self.num_layers - 1: # Output layer
if self.num_classes == 1:
A, _ = self._sigmoid(Z)
else:
A, _ = self._softmax(Z)
else:
A, _ = self._relu(Z) if self.activation == "relu" else self._sigmoid(Z)
self.A_cache[f'A{l}'] = A
return self.A_cache[f'A{self.num_layers-1}']
def backward(self, Y: np.ndarray) -> dict:
m = Y.shape[1]
grads = {}
# Output layer
A_last = self.A_cache[f'A{self.num_layers-1}']
if self.num_classes == 1:
dA = - (np.divide(Y, A_last) - np.divide(1 - Y, 1 - A_last))
dZ = self._sigmoid_back(dA, self.Z_cache[f'Z{self.num_layers-1}'])
else:
dZ = self._softmax_back(A_last, Y)
# Backpropagate through the network
for l in reversed(range(1, self.num_layers)):
A_prev = self.A_cache[f'A{l-1}']
grads[f'dW{l}'] = np.dot(dZ, A_prev.T) / m
grads[f'db{l}'] = np.sum(dZ, axis=1, keepdims=True) / m
if l > 1:
dA = np.dot(self.parameters[f'W{l}'].T, dZ)
Z = self.Z_cache[f'Z{l-1}']
dZ = self._relu_back(dA, Z) if self.activation == "relu" else self._sigmoid_back(dA, Z)
return grads
def optimizer_step(self, grads: dict) -> None:
if self.optimizer == "sgd":
for l in range(1, self.num_layers):
self.parameters[f'W{l}'] -= self.learning_rate * grads[f'dW{l}']
self.parameters[f'b{l}'] -= self.learning_rate * grads[f'db{l}']
elif self.optimizer == "adam":
beta1, beta2 = 0.9, 0.999
epsilon = 1e-8
self.t += 1
for l in range(1, self.num_layers):
for param in ['W', 'b']:
self.v[f'{param}{l}'] = beta1 * self.v[f'{param}{l}'] + (1 - beta1) * grads[f'd{param}{l}']
self.s[f'{param}{l}'] = beta2 * self.s[f'{param}{l}'] + (1 - beta2) * (grads[f'd{param}{l}']**2)
v_corrected = self.v[f'{param}{l}'] / (1 - beta1**self.t)
s_corrected = self.s[f'{param}{l}'] / (1 - beta2**self.t)
self.parameters[f'{param}{l}'] -= self.learning_rate * v_corrected / (np.sqrt(s_corrected) + epsilon)
def calculate_loss(self, Y: np.ndarray, A: np.ndarray) -> float:
m = Y.shape[1]
if self.num_classes == 1:
# Binary Cross-Entropy Loss
loss = -np.mean(Y * np.log(A) + (1 - Y) * np.log(1 - A))
else:
# Categorical Cross-Entropy Loss
loss = -np.mean(np.sum(Y * np.log(A), axis=0))
return loss
def predict(self, X: np.ndarray) -> np.ndarray:
A = self.forward(X)
if self.num_classes == 1:
return (A > 0.5).astype(int)
else:
return np.argmax(A, axis=0)
def train(self, X: np.ndarray, Y: np.ndarray, epochs: int, batch_size: int = 32) -> List[float]:
m = X.shape[1]
losses = []
for epoch in range(epochs):
epoch_loss = 0
for i in range(0, m, batch_size):
X_batch = X[:, i:i+batch_size]
Y_batch = Y[:, i:i+batch_size]
A = self.forward(X_batch)
grads = self.backward(Y_batch)
self.optimizer_step(grads)
batch_loss = self.calculate_loss(Y_batch, A)
epoch_loss += batch_loss * X_batch.shape[1]
epoch_loss /= m
losses.append(epoch_loss)
if epoch % 100 == 0:
print(f"Epoch {epoch}, Loss: {epoch_loss}")
return losses