forked from Maurya69/Movie_Review-Contribute-a-thon-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmake_csv.py
56 lines (42 loc) · 1.98 KB
/
make_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
from concurrent.futures import ThreadPoolExecutor
import pandas as pd
TRAIN = 'train.csv'
TEST = 'test.csv'
def read_file(filepath: str) -> str:
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
return f.read().strip()
def build_reviews(path: str, max_workers=8) -> tuple[list]:
neg_review = []
pos_review = []
neg = os.path.join(path, "neg")
pos = os.path.join(path, "pos")
neg_files = [os.path.join(neg, x) for x in os.listdir(neg)]
pos_files = [os.path.join(pos, x) for x in os.listdir(pos)]
with ThreadPoolExecutor(max_workers=max_workers) as executor:
neg_review.extend(executor.map(read_file, neg_files))
with ThreadPoolExecutor(max_workers=max_workers) as executor:
pos_review.extend(executor.map(read_file, pos_files))
return pos_review, neg_review
# This function creates CSVs from the data in the folder structure
def make_csv(base_path: str, output_path: str, max_workers=8) -> None:
test_path = os.path.join(base_path, "test")
train_path = os.path.join(base_path, "train")
### for test csv
pos_review, neg_review = build_reviews(test_path, max_workers)
### for train csv
pos_review1, neg_review1 = build_reviews(train_path, max_workers)
testreview = [*pos_review, *neg_review]
trainreview = [*pos_review1, *neg_review1]
# optimistic way of marking review either 0 or 1.
test_csv = {'review':testreview,
'Sentiment': [1]*len(pos_review) + [0]*len(neg_review)}
train_csv = {'review':trainreview,
'Sentiment': [1]*len(pos_review1) + [0]*len(neg_review1)}
test_csv = pd.DataFrame(test_csv)
test_csv.to_csv(os.path.join(output_path, TEST), index=False)
train_csv = pd.DataFrame(train_csv)
train_csv.to_csv(os.path.join(output_path, TRAIN), index=False)
# Example usage
# make_csv('aclImdb', '', max_workers=10)
# 38.717 SECONDS